Skip to main content

Aerial Locomotion in Cluttered Environments

  • Chapter
  • First Online:
Robotics Research

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 100))

Abstract

Many environments where robots are expected to operate are cluttered with objects, walls, debris, and different horizontal and vertical structures. In this chapter, we present four design features that allow small robots to rapidly and safely move in 3 dimensions through cluttered environments: a perceptual system capable of detecting obstacles in the robot’s surroundings, including the ground, with minimal computation, mass, and energy requirements; a flexible and protective framework capable of withstanding collisions and even using collisions to learn about the properties of the surroundings when light is not available; a mechanism for temporarily perching to vertical structures in order to monitor the environment or communicate with other robots before taking off again; and a self-deployment mechanism for getting in the air and perform repetitive jumps or glided flight. We conclude the chapter by suggesting future avenues for integration of multiple features within the same robotic platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Patent # PCT/IB2008/051497 & US 2011/0029161.

References

  1. R. Siegwart, D. Nourbakhsh, I. Scaramuzza, Introduction to Autonomous Mobile Robotics, 2nd edn. (MIT Press, 2011)

    Google Scholar 

  2. J.-C. Zufferey, Bio-inspired Flying Robots: Experimental Synthesis of Autonomous Indoor Flyers (EPFL/CRC Press, 2008)

    Google Scholar 

  3. N. Strausfeld, Atlas of an Insect Brain (Springer, 1976)

    Google Scholar 

  4. G. Taylor, H. Krapp, Sensory systems and flight stability: what do insects measure and why. Adv. Insect Physiol. 34, 231–316 (2008)

    Article  Google Scholar 

  5. M. Srinivasan, M. Lehrer, W. Kirchner, S. Zhang, Range perception through apparent image speed in freely-flying honeybees. Vis. Neurosci. 6, 519–535 (1991)

    Article  Google Scholar 

  6. L. Tammero, M. Dickinson, The influence of visual landscape on the free flight behavior of the fruit fly drosophila melanogaster. J. Exp. Biol. 205, 327–343 (2002)

    Google Scholar 

  7. M. Egelhaaf, R. Kern, H. Krapp, J. Kretzberg, R. Kurtz, A. Warzechna, Neural encoding of behaviourally relevant visual-motion information in the fly. Trends Neurosci. 25(2), 96–102 (2002)

    Article  Google Scholar 

  8. M. Land, Visual acuity in insects. Annu. Rev. Entomol. 42, 147–177 (1997)

    Article  Google Scholar 

  9. P. Sobey, Active navigation with a monocular robot. Biol. Cybern. 71, 433–440 (1994)

    Article  Google Scholar 

  10. D. Coombs, M. Herman, T. Hong, M. Nashman, Real-time obstacle avoidance using central flow divergence and peripheral flow, in International Conference on Computer Vision (1995), pp. 276–283

    Google Scholar 

  11. J. Santos-Victor, G. Sandini, F. Curotto, S. Garibaldi, Divergent stereo for robot navigation: a step forward to a robotic bee. Int. J. Comput. Vis. 14, 159–177 (1995)

    Article  Google Scholar 

  12. M. Srinivasan, J. Chahl, K. Weber, S. Venkatesh, H. Zhang, in Robot Navigation Inspired by Principles of Insect Vision, ed. by A. Zelinsky. Field and Service Robotics (Springer, 1998), pp. 12–16

    Google Scholar 

  13. J. Serres, F. Ruffier, S. Viollet, N. Franceschini, Toward optic flow regulation for wallfollowing and centring behaviours. Int. J. Adv. Rob. Syst. 3(27), 147–154 (2006)

    Google Scholar 

  14. F. Ruffier, N. Franceschini, Optic flow regulation: the key to aircraft automatic guidance. Robot. Auton. Syst. 50(4), 177–194 (2005)

    Google Scholar 

  15. T. Neumann, H. Blthoff, Behavior-oriented vision for biomimetic flight control, in Proceedings of the EPSRC/BBSRC International Workshop on Biologically Inspired Robotics (2002), pp. 196–203

    Google Scholar 

  16. L. Muratet, S. Doncieux, Y. Brire, J. Meyer, A contribution to vision-based autonomous helicopter flight in urban environments. Robot. Auton. Syst. 50(4), 195–209 (2005)

    Article  Google Scholar 

  17. J. Humbert, J.K. Conroy, C. Neely, G. Barrows, Wide-Field Integration Methods for Visuomotor Control (Springer, 2009)

    Google Scholar 

  18. A. Beyeler, J. Zufferey, D. Floreano, Vision-based control of near-obstacle flight. Auton. Rob. 27(3), 201–219 (2009)

    Article  Google Scholar 

  19. J. Gibson, The Perception of the Visual World (Houghton Mifflin, Boston, 1950)

    Google Scholar 

  20. J. Koenderink, A. van Doorn, Facts on optic flow. Biol. Cybern. 56, 247–254 (1987)

    Article  MATH  Google Scholar 

  21. J. Gibson, The Ecological Approach to Visual Perception (Houghton Mifflin, Boston, 1979)

    Google Scholar 

  22. V. Braitenberg, Vehicles—Experiments In Synthetic Psychology (The MIT Press, Cambridge, MA, 1984)

    Google Scholar 

  23. A. Duchon, W.H. Warren, L. Kaelbling, Ecological robotics. Adapt. Behav. 6, 473–507 (1998)

    Article  Google Scholar 

  24. J. Zufferey, A. Beyeler, D. Floreano, Optic Flow to Steer and Avoid Collisions in 3D (Springer, 2009), pp. 73–86

    Google Scholar 

  25. J.-C. Zufferey, A. Klaptocz, A. Beyeler, J.-D. Nicoud, D. Floreano, A 10-gram vision-based flying robot. Adv. Robot. J. Robot. Soc. Jpn. 21(14), 1671–1684 (2007)

    Article  Google Scholar 

  26. J.-C. Zufferey, A. Beyeler, D. Floreano, Autonomous flight at low altitude using light sensors and little computational power. Int. J. Micro Air Veh. 2(2), 107–117 (2010)

    Article  Google Scholar 

  27. J.F. Roberts, T. Stirling, J.-C. Zufferey, D. Floreano, Quadrotor using minimal sensing for autonomous indoor flight, in European Micro Air Vehicle Conference and Flight Competition (EMAV2007) (2007)

    Google Scholar 

  28. P. Oh, M. Joyce, J. Gallagher, Designing an aerial robot for hover-and-stare surveillance, in 12th International Conference on Advanced Robotics, 2005. ICAR’05. Proceedings (IEEE, 2005), pp. 303–308

    Google Scholar 

  29. D. Schafroth, S. Bouabdallah, C. Bermes, R. Siegwart, From the test benches to the first prototype of the mufly micro helicopter. J. Intell. Rob. Syst (2008)

    Google Scholar 

  30. S. Saripalli, J. Montgomery, G. Sukhatme, Vision-based autonomous landing of an unmanned aerial vehicle, in IEEE International Conference on Robotics and Automation, vol. 3 (2002)

    Google Scholar 

  31. L. Frantsevich, Righting kinematics in beetles (insecta: Coleoptera). Arthropod Struct. Dev. 33(3), 221–235 (2004)

    Article  Google Scholar 

  32. A. Klaptocz, G. Boutinard-Rouelle, A. Briod, J.-C. Zufferey, D. Floreano, An indoor flying platform with collision robustness and self-recovery, in 2010 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2010), pp. 3349–3354

    Google Scholar 

  33. J. Roberts, J. Zufferey, D. Floreano, Energy management for indoor hovering robots, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2008) (2008), pp. 1242–1247

    Google Scholar 

  34. M.L. Anderson, C.J. Perry, B.M. Hua, D.S. Olsen, J.R. Parcus, K.M. Pederson, D.D. Jensen, The sticky-pad plane and other innovative concepts for perching uavs, in Proceedings of the 47th AIAA Aerospace Sciences Meeting (2009)

    Google Scholar 

  35. R. Cory, R. Tedrake, Experiments in fixed-wing uav perching, in AIAA Conference on Guidance, Navigation, and Control (2008)

    Google Scholar 

  36. A. Lussier-Desbiens, M. Cutkosky, Landing and perching on vertical surfaces with microspines for small unmanned air vehicles. J. Intell. Rob. Syst. 57(1), 313–327 (2010)

    Article  Google Scholar 

  37. M. Kovac, J. Germann, C. Hurzeler, R. Siegwart, D. Floreano, A perching mechanism for micro aerial vehicles. J. Micro-Nano Mechatron (2010)

    Google Scholar 

  38. D. Santos, B. Heyneman, S. Kim, N. Esparza, M.R. Cutkosky, Gecko-inspired climbing behaviors on vertical and overhanging surfaces, in IEEE International Conference on Robotics and Automation, 2008, pp. 1125–1131

    Google Scholar 

  39. M. Kovac, M. Schlegel, J.-C. Zufferey, D. Floreano, Steerable miniature jumping robot. Auton. Rob. 28(3), 295–306 (2010)

    Google Scholar 

  40. T.J. Roberts, R.L. Marsh, Probing the limits to muscle-powered accelerations: lessons from jumping bullfrogs. J. Exp. Biol. 206(15), 2567–2580 (2003)

    Article  Google Scholar 

  41. R. M. Alexander, Elastic Mechanisms in Animal Movement (Cambridge University Press, 1988)

    Google Scholar 

  42. M. Burrows, Biomechanics: Froghopper insects leap to new heights. Nature 424(6948), 509 (2003)

    Article  Google Scholar 

  43. U. Scarfogliero, C. Stefanini, P. Dario, Design and development of the long-jumping “grillo” mini robot, in IEEE International Conference on Robotics and Automation (2007), pp. 467–472

    Google Scholar 

  44. M. Kovac, M. Fuchs, A. Guignard, J. Zufferey, D. Floreano, A miniature 7 g jumping robot, in IEEE International Conference on Robotics and Automation (ICRA2008) (2008), pp. 373–378

    Google Scholar 

  45. A. Yamada, M. Watari, H. Mochiyama, H. Fujimoto, A robotic catapult based on the closed elastica with a high stiffness endpoint and its application to swimming tasks, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2008), pp. 1477–1482

    Google Scholar 

  46. P. Zhang, Q. Zhou, Voice coil based hopping mechanism for microrobot, in IEEE international conference on Robotics and Automation (2009), pp. 1783–1788

    Google Scholar 

  47. Y. Sugiyama, M. Yamanaka, S. Hirai, Circular/spherical robots for crawling and jumping, in IEEE International Conference on Robotics and Automation (2005), pp. 3595–3600

    Google Scholar 

  48. S. Dubowsky, S. Kesner, J.S. Plante, P. Boston, Hopping mobility concept for search and rescue robots. Ind. Rob. Int. J. 35(3), 238–245 (2008)

    Article  Google Scholar 

  49. J. Zhao, R. Yang, N. Xi, B. Gao, X. Fan, M. W. Mutka, L. Xiao, Development of a miniature self-stabilization jumping robot, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2009), pp. 2217–2222

    Google Scholar 

  50. M. Kovac, M. Schlegel, J.-C. Zufferey, D. Floreano, A miniature jumping robot with selfrecovery capabilities, in IEEE/RSJ International Conference on Robotics and Automation (2009), pp. 583–588

    Google Scholar 

  51. R. Armour, K. Paskins, A. Bowyer, J.F.V. Vincent, W. Megill, Jumping robots: a biomimetic solution to locomotion across rough terrain. Bioinspiratoin Biomimetics J. 2, 65–82 (2007)

    Article  Google Scholar 

  52. S.A. Stoeter, P.E. Rybski, N. Papanikolopoulos, Autonomous stair-hopping with scout robots, in IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1 (2002), pp. 721–726

    Google Scholar 

  53. J.M. Morrey, B. Lambrecht, D. Horchler, R.E. Ritzmann, R.D. Quinn, Highly mobile and robust small quadruped robots, in International Conference on Intelligent Robots and Systems, vol. 1 (2003), pp. 82–87

    Google Scholar 

  54. M. Kovac, W. Hraiz, O. Fauria, J.-C. Zufferey, D. Floreano, The EPFL jumpglider: a hybrid jumping and gliding robot. Review (2011)

    Google Scholar 

  55. M. Kovac, J. Zufferey, D. Floreano, Towards a Self-deploying and Gliding Robot (Springer, 2009)

    Google Scholar 

  56. M. Kovac, J.-C. Zufferey, D. Floreano, Hybrid jumping and gliding locomotion for miniature robotics. Review (2011)

    Google Scholar 

Download references

Acknowledgements

These works have been sponsored by several grants of the Swiss National Science Foundation, including the NCCR Robotics, by EPFL, and by the Science and Technology Division of Armasuisse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Floreano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Floreano, D., Zufferey, JC., Klaptocz, A., Germann, J., Kovac, M. (2017). Aerial Locomotion in Cluttered Environments. In: Christensen, H., Khatib, O. (eds) Robotics Research . Springer Tracts in Advanced Robotics, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-319-29363-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29363-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29362-2

  • Online ISBN: 978-3-319-29363-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics