Skip to main content

Opportunities and Challenges with Autonomous Micro Aerial Vehicles

  • Chapter
  • First Online:
Robotics Research

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 100))

Abstract

We survey the recent work on micro-UAVs, a fast-growing field in robotics, outlining the opportunities for research and applications, along with the scientific and technological challenges. Micro-UAVs can operate in three-dimensional environments, explore and map multi-story buildings, manipulate and transport objects, and even perform such tasks as assembly. While fixed-base industrial robots were the main focus in the first two decades of robotics, and mobile robots enabled most of the significant advances during the next two decades, it is likely that UAVs, and particularly micro-UAVs will provide a major impetus for the third phase of development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Abbeel, Apprenticeship learning and reinforcement learning with application to robotic control. Ph.D. thesis, Stanford University, Stanford, CA, 2008

    Google Scholar 

  2. Aeroenvironment nano hummingbird (2011). http://www.avinc.com/nano

  3. Ascending Technologies, GmbH. http://www.asctec.de

  4. A.G. Bachrach, Autonomous flight in unstructured and unknown indoor environments. Master’s thesis, MIT, Cambridge, MA, 2009

    Google Scholar 

  5. C. Bermes, Design and dynamic modeling of autonomous coaxial micro helicopters. Ph.D. thesis, ETH Zurich, Switzerland, 2010

    Google Scholar 

  6. C. Bermes, D. Schafroth, S. Bouabdallah, R. Siegwart, Modular simulation model for coaxial rotary wing mavs, in Proceedings of The 2nd International Symposium on Unmanned Aerial Vehicles (2009)

    Google Scholar 

  7. M. Blosch, S. Weiss, D. Scaramuzza, R. Siegwart, Vision based MAV navigation in unknown and unstructured environments, in Proceedings of the IEEE International. Conference on Robotics and Automation (Anchorage, AK, 2010), pp. 21–28

    Google Scholar 

  8. S. Bouabdallah, Design and control of quadrotors with applications to autonomous flying. Ph.D. thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, 2007

    Google Scholar 

  9. J. Craig, P. Hsu, S. Sastry, Adaptive control of mechanical manipulators, in Proceedings of the IEEE International. Conference on Robotics and Automation, vol. 3 (1986), pp. 190–195. doi:10.1109/ROBOT.1986.1087661

  10. L. Faruque, J.S. Humbert, Dipteran insect flight dynamics. part 2: lateral-directional motion about hover. J. Theoret. Biol. 265(3), 306–313 (2010). doi:10.1016/j.jtbi.2010.05.003

  11. J. Fink, N. Michael, S. Kim, V. Kumar, Planning and control for cooperative manipulation and transportation with aerial robots. Int. J. Robot. Res. 30(3) (2011)

    Google Scholar 

  12. J.H. Gillula, H. Huang, M.P. Vitus, C.J. Tomlin, Design of guaranteed safe maneuvers using reachable sets: autonomous quadrotor aerobatics in theory and practice, in Proceedings of the IEEE International. Conference on Robotics and Automation (Anchorage, AK, 2010), pp. 1649–1654

    Google Scholar 

  13. S. Grzonka, G. Grisetti, W. Burgard, Towards a navigation system for autonomous indoor flying, in Proceedings of the IEEE International. Conference on Robotics and Automation (Kobe, Japan, 2009), pp. 2878–2883

    Google Scholar 

  14. D. Gurdan, J. Stumpf, M. Achtelik, K. Doth, G. Hirzinger, D. Rus, Energy-efficient autonomous four-rotor flying robot controlled at 1 kHz, in Proceedings of the IEEE International. Conference on Robotics and Automation (Roma, Italy, 2007)

    Google Scholar 

  15. H. Huang, G.M. Hoffman, S.L. Waslander, C.J. Tomlin, Aerodynamics and control of autonomous quadrotor helicopters in aggressive maneuvering, in Proceedings of the IEEE International. Conference on Robotics and Automation (Kobe, Japan, 2009), pp. 3277–3282

    Google Scholar 

  16. A. Jadbabaie, J. Hauser, On the stability of receding horizon control with a general terminal cost. IEEE Trans. Autom. Control 50(5), 674–678 (2005)

    Article  MathSciNet  Google Scholar 

  17. Q. Jiang, V. Kumar, The direct kinematics of objects suspended from cables, in ASME International Design Engineering Technical Conference and Computer and Information in Engineering Conference (2010)

    Google Scholar 

  18. Q. Jiang, V. Kumar, in The inverse kinematics of 3-d towing, ed. by J. Lenarcic, M.M. Stanisic. Advances in Robot Kinematics (2010), pp. 321–328

    Google Scholar 

  19. H. Kim, D. Shim, S. Sastry, Nonlinear model predictive tracking control for rotorcraft-based unmanned aerial vehicles, in Proceedings of the American Control Conference, vol. 5 (Anchorage, AK, 2002), pp. 3576–3581

    Google Scholar 

  20. L. Kneip, A. Martinelli, S. Weiss, D. Scaramuzza, R. Siegwart, Closed-form solution for absolute scale velocity determination combining inertial measurements and a single feature correspondence, in Proceedings of the IEEE International Conference on Robotics and Automation (2011), pp. 4546–4553

    Google Scholar 

  21. S.M. Lavalle, Planning Algorithms (Cambridge University Press, 2006)

    Google Scholar 

  22. T. Lee, M. Leok, N. McClamroch, Geometric tracking control of a quadrotor uav on SE(3), in Proceedings of the IEEE Conference on Decision and Control (2010)

    Google Scholar 

  23. M. Likhachev, G. Gordon, S. Thrun, ARA*: anytime A* with provable bounds on sub- optimality. Adv. Neural Inf. Process. Syst. 16 (2003)

    Google Scholar 

  24. Q. Lindsey, D. Mellinger, V. Kumar, Construction of cubic structures with quadrotor teams, in Proceedings of Robotics: Science and Systems (Los Angeles, CA, 2011)

    Google Scholar 

  25. S. Lupashin, A. Schollig, M. Sherback, R. D’Andrea, A simple learning strategy for high- speed quadrocopter multi-flips, in Proceedings of the IEEE International Conference on Robotics and Automation (Anchorage, AK, 2010), pp. 1642–1648

    Google Scholar 

  26. D. Mellinger, V. Kumar, Minimum snap trajectory generation and control for quadrotors, in Proceedings of the IEEE International Conference on Robotics and Automation (Shanghai, China, 2011)

    Google Scholar 

  27. D. Mellinger, Q. Lindsey, M. Shomin, V. Kumar, Design, modeling, estimation and control for aerial grasping and manipulation, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (San Francisco, CA, 2011)

    Google Scholar 

  28. D. Mellinger, N. Michael, V. Kumar, Trajectory generation and control for precise aggressive maneuvers with quadrotors, in Proceedings of the International Symposium on Experimental Robotics (Delhi, India, 2010)

    Google Scholar 

  29. D. Mellinger, M. Shomin, N. Michael, V. Kumar, Cooperative grasping and transport using multiple quadrotors, in International Symposium on Distributed Autonomous System (Lausanne, Switzerland, 2010)

    Google Scholar 

  30. B. Mettler, Modeling small-scale unmanned rotorcraft for advanced flight control design. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA, 2001

    Google Scholar 

  31. N. Michael, J. Fink, V. Kumar, Cooperative manipulation and transportation with aerial robots. Auton. Rob. 30(1), 73–86 (2011)

    Article  MATH  Google Scholar 

  32. N. Michael, D. Mellinger, Q. Lindsey, V. Kumar, he grasp multiple micro uav testbed. IEEE Robot. Autom. Mag. (2010)

    Google Scholar 

  33. N. Michael, S. Tadokoro, K. Nagatani, K. Ohno, Experiments with air ground coordination for search and rescue in collapsed buildings (2011). Working Paper

    Google Scholar 

  34. D.S. Miller, G. Gremillion, B. Ranganathan, P.D. Samuel, S. Zarovy, M. Costello, A. Mehta, J.S. Humbert, Challenges present in the development and stabilization of a micro quadrotor helicopter, in Autonomous Weapons Summit and GNC Challenges for Miniature Autonomous Systems Workshop (2010)

    Google Scholar 

  35. A.I. Mourikis, N. Trawny, S.I. Roumeliotis, A.E. Johnson, A. Ansar, L. Matthies, Vision-aided inertial navigation for spacecraft entry, descent, and landing. IEEE Trans. Robot. 25(2), 264–280 (2009)

    Article  Google Scholar 

  36. R.M. Murray, M. Rathinam, W. Sluis, Differential flatness of mechanical control systems: a catalog of prototype systems, in Proceedings of the 1995 ASME International Congress and Exposition (1995)

    Google Scholar 

  37. G. Niemeyer, J.J. Slotine, Performance in adaptive manipulator control, in Proceedings of the IEEE Conference on Decision and Control, vol. 2 (1988), pp. 1585–1591. doi:10.1109/CDC.1988.194595

  38. M.J.V. Nieuwstadt, R.M. Murray, Real-time trajectory generation for differentially flat systems. Int. J. Robust Nonlinear Control 8, 995–1020 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. R. Ortega, M.W. Spong, Adaptive motion control of rigid robots: a tutorial, in Proceedings of the IEEE Conference on Decision and Control, vol. 2 (1988), pp. 1575–1584. doi:10.1109/CDC.1988.194594

  40. D. Pines, F. Bohorquez, Challenges facing future micro air vehicle development. AIAA J. Aircr. 43(2), 290–305 (2006)

    Article  Google Scholar 

  41. P. Pounds, A. Dollar, Hovering stability of helicopters with elastic constraints, in ASME Dynamic Systems and Control Conference (2010)

    Google Scholar 

  42. O. Purwin, R. D’Andrea, Performing aggressive maneuvers using iterative learning control, in Proceedings of the IEEE International Conference on Robotics and Automation (Kobe, Japan, 2009), pp. 1731–1736

    Google Scholar 

  43. J. Ratti, G. Vachtsevanos, Towards energy efficiency in micro hovering air vehicles, in IEEE Aerospace Conference (Big Sky, MT, 2011), pp. 1–8

    Google Scholar 

  44. S. Saripalli, J.F. Montgomery, G.S. Sukhatme, Vision-based autonomous landing of an un- manned aerial vehicle, in Proceedings of the IEEE International Conference on Robotics and Automation (Washington, DC, 2002), pp. 2799–2804

    Google Scholar 

  45. K.W. Sevcik, N. Kuntz, P.Y. Oh, Exploring the effect of obscurants on safe landing zone indentification. J. Intell. Robot. Syst. 57(1–4), 281–295 (2010)

    Article  MATH  Google Scholar 

  46. C.S. Sharp, O. Shakernia, S.S. Sastry, A vision system for landing an unmanned aerial vehicle, in Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2 (Seoul, Korea, 2001), pp. 1720–1727

    Google Scholar 

  47. S. Shen, N. Michael, V. Kumar, 3D estimation and control for autonomous flight with constrained computation, in Proceedings of the IEEE International Conference on Robotics and Automation (Shanghai, China, 2011)

    Google Scholar 

  48. S. Shen, N. Michael, V. Kumar, Exploration and control for autonomous mapping with aerial robots. Technical report, University of Pennsylvania, 2011

    Google Scholar 

  49. R. Tedrake, LQR-Trees: feedback motion planning on sparse randomized trees, in Proceedings of Robotics: Science and Systems (Seattle, WA, 2009)

    Google Scholar 

  50. M. Turpin, N. Michael, V. Kumar, Trajectory design and control for aggressive formation flight with quadrotors, in Proceedings of the International Symposium of Robotics Research (Flagstaff, AZ, 2011)

    Google Scholar 

  51. U.S. Military Unmanned Aerial Vehicles (UAV) Market Forecast 2010–2015 (2011). http://www.uavmarketresearch.com/

  52. J. van der Berg, P. Abbeel, K. Goldberg, LQG-MP: Optimized path planning for robots with motion uncertainty and imperfect state information. Int. J. Robot. Res. 30(7), 895–913 (2011). doi:10.1177/0278364911406562

  53. J. Wen, K. Kreutz-Delgado, The attitude control problem. IEEE Trans. Autom. Control 36(10), 1148–1162 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  54. L. Whitcomb, A. Rizzi, D. Koditschek, Comparative experiments with a new adaptive controller for robot arms. IEEE Trans. Robot. Autom. 9(1), 59–70 (1993). doi:10.1109/70.210795

    Article  Google Scholar 

  55. C.H. Wolowicz, J.S. Bowman, W.P. Gilbert, Similitude requirements and scaling relationships as applied to model testing. Technical report, NASA, 1979

    Google Scholar 

  56. J. Yu, A. Jadbabaie, J. Primbs, Y. Huang, Comparison of nonlinear control design techniques on a model of the caltech ducted fan, in IFAC World Congress, IFAC-2c-112 (1999), pp. 53–58

    Google Scholar 

  57. S. Zarovy, M. Costello, A. Mehta, A. Flynn, G. Gremillion, D. Miller, B. Ranganathan, J.S. Humbert, P. Samuel, Experimental study of gust effects on micro air vehicles, in AIAA Conference on Atmospheric Flight Mechanics, AIAA-2010–7818 (American Institute of Aeronautics and Astronautics, 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumar, V., Michael, N. (2017). Opportunities and Challenges with Autonomous Micro Aerial Vehicles. In: Christensen, H., Khatib, O. (eds) Robotics Research . Springer Tracts in Advanced Robotics, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-319-29363-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29363-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29362-2

  • Online ISBN: 978-3-319-29363-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics