Skip to main content

Isolation and Identification of Allelochemicals from Ascocarp of Tuber Species

  • Chapter
  • First Online:
Plant, Soil and Microbes

Abstract

Truffles (Tuber spp.) belong to the fruiting bodies of certain hypogeous ascomycetes, which may grow in ectomycorrhizal symbioses with specified shrub and tree species. Some truffles, notably Tuber melanosporum and T. aestivum, form ‘burnt’ area, also known as ‘burn’ or ‘brûlé’ around their symbiotic hosts. Increasingly focused interest has been centred on an in-depth research and study of truffle methanolic extracts and their fatty acid allelochemicals. These metabolites have been recognised as biochemical and have great influence in the burnt formation. This present chapter contributes the knowledge of truffle methanolic extracts and fatty acids regarding allelopathic activity to understand the applicability and sustainability of truffles in agricultural practices for the management of weed and plant pathogens. However, it will also be helpful to the companies specialising in the processing of truffle and the recovery and reinsertion of waste truffles through the production process for the isolation of important allelopathic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An M (2005) Mathematical modelling of dose-response relationship (hormesis) in allelopathy and its application. Nonlinearity Biol Toxicol Med 3:153–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angelini P, Granetti B (2001) Individuation and micropropagation of some clones of Populus alba L. envisaging their use in truffle cultivation. In: Proceedings of the Fifth International Congress on the Science and cultivation of truffles, French Federation of Trufficulteurs. pp 289–292

    Google Scholar 

  • Angelini P, Costamagna L, Ciani M (1998) Bacterial ecology of ascocarps of the Tuber sp.pl.: characterization of functional groups and their capability to metabolize sulfite and organic sulfur compounds. Ann Microbiol 48:59–65

    CAS  Google Scholar 

  • Angelini P, Granetti B, Pagiotti R (2008) Effect of antimicrobial activity of Melaleuca alternifolia essential oil on antagonistic potential of Pleurotus species against Trichoderma harzianum in dual culture. World J Microbiol Biotechnol 24:197–202

    Article  CAS  Google Scholar 

  • Angelini P, Pagiotti R, Venanzoni R, Granetti B (2009) Antifungal and allelopathic effects of Asafoetida against Trichoderma harzianum and Pleurotus spp. Allelopathy J 23:357–368

    Google Scholar 

  • Angelini P, Venanzoni R, Pagiotti R, Tirillini B, Granetti B, Donnini D (2010) Attività allelopatica, antibatterica ed antiossidante di estratti metanolici di Tuber magnatum e T. melanosporum. In: Proceeding of the 3rd International Congress on Truffle, Umbria Region, Communities of the Martani, Serano and Subasio Mountains, Spoleto, Italy, 25–28 Nov 2008. Federici typography, Terni, Italy, pp 308–314

    Google Scholar 

  • Angelini P, Venanzoni R, Pagiotti R, Tirillini B, Granetti B, Donnini D (2010b) Biological activities of methanolic extract from Tuber aestivum, T. borchii, and T. brumale f. moschatum. Osterr Z Pilzk 19:281–290

    Google Scholar 

  • Angelini P, De Angelis MC, Guerzoni RP, Gigante D, Rubini A, Properzi P, Venanzoni R (2014a) Wood identification of pile dwellings from the Bronze Age San Savino site (Lake Trasimeno, central Italy). Plant Biosyst 148:713–722

    Article  Google Scholar 

  • Angelini P, Bricchi E, Gigante D, Poponessi S, Spina A, Venanzoni R (2014b) Pollen morphology of some Amaranthaceae common in Italy. Flora Medit 24:247–272

    Google Scholar 

  • Angelini P, Compagno R, Arcangeli A, Bistocchi G, Gargano ML, Venanzoni R, Venturella G (2016) Macrofungal diversity and ecology in two Mediterranean forest types. Plant Biosyst. doi:10.1080/11263504.2014.987844

    Google Scholar 

  • Angelini P, Tirillini B, Properzi A, Rol C, Venanzoni R (2015) Identification and bioactivity of the growth inhibitors in Tuber spp. methanolic extracts. Plant Biosyst 149:1000–1009. doi:10.1080/11263504.2014.983575

    Google Scholar 

  • Ashrafi ZY, Rahnavard A, Sadeghi S, Alizade HM, Mashhadi HR (2008) Study of the allelopathic potential of extracts of Azadirachta indica (Neem). Online J Biol Sci 8:57–61

    Article  Google Scholar 

  • Azul AM, Nunes J, Ferreira I, Coelho AS, Veríssimo P, Trovão J, Campos A, Castro P, Freitas H (2014) Valuing native ectomycorrhizal fungi as a Mediterranean forestry component for sustainable and innovative solutions. Botany 92:161–171

    Article  CAS  Google Scholar 

  • Belfiori B, Riccioni C, Tempesta S, Pasqualetti M, Paolocci F, Rubini A (2012) Comparison of ectomycorrhizal communities in natural and cultivated Tuber melanosporum truffle grounds. FEMS Microbiol Ecol 81:547–561

    Article  CAS  PubMed  Google Scholar 

  • Berestetskiy AO (2008) A review of fungal phytotoxins: from basic studies to practical use. Appl Biochem Microbiol 44:453–465

    Article  CAS  Google Scholar 

  • Bertholdsson NO (2012) Allelopathy—a tool to improve the weed competitive ability of wheat with herbicide-resistant black-grass (Alopecurus myosuroides Huds.). Agron J 2:284–294

    Article  Google Scholar 

  • Bhadoria PBS (2011) Allelopathy: a natural way towards weed management. Am J Exp Agric 1:7–20

    Google Scholar 

  • Bhattacharya SK (2013) Recent advances in shotgun lipidomics and their implication for vision research and ophthalmology. Curr Eye Res 38:417–427

    Article  CAS  PubMed  Google Scholar 

  • Bonito G, Smith ME, Brenneman T, Rytas Vilgalys R (2012) Assessing ectomycorrhizal fungal spore banks of truffle producing soils with pecan seedling trap-plants. Plant Soil 356:357–366

    Article  CAS  Google Scholar 

  • Bonnet JL, Bonnemoy F, Dusser M, Bohatier J (2007) Assessment of the potential toxicity of herbicides and their degradation products to non target cells using two microorganisms, the bacteria Vibrio fischeri and the ciliate Tetrahymena pyriformis. Environ Toxicol 22:78–91

    Article  CAS  PubMed  Google Scholar 

  • Brenna JT (2013) Fatty acid analysis by high resolution gas chromatography and mass spectrometry for clinical and experimental applications. Curr Opin Clin Nutr Metab Care 16:548–554

    Article  CAS  PubMed  Google Scholar 

  • Büntgen U, Egli S, Camarero JM, Fischer EM, Stobbe U, Kauserud H, Tegel W, Sproll L, Stenseth NC (2012) Drought-induced decline in Mediterranean truffle harvest. Nat Clim Change 2:827–829

    Article  Google Scholar 

  • Busi R, Vila-Aiub MM, Beckie HJ, Gaines TA, Goggin DE, Kaundun SS, Lacoste M, Neve P, Nissen SJ, Norsworthy JK, Renton M, Shaner DL, Tranel PJ, Wright T, Yu Q, Powles SB (2013) Herbicide-resistant weeds: from research and knowledge to future needs. Evol Appl 6:1218–1221

    Article  PubMed  PubMed Central  Google Scholar 

  • Busse MD, Fiddler GO, Ratcliff AW (2004) Ectomycorrhizal formation in herbicide-treated soils of differing clay and organic matter content. Water Air Soil Pollut 152:23–34

    Article  CAS  Google Scholar 

  • Cahill JF (1999) Fertilization effects on interactions between above-and belowground competition in an old field. Ecology 80:466–480

    Article  Google Scholar 

  • Chandra S, Chatterjee P, Dey P, Bhattacharya S (2012) Allelopathic effect of Ashwagandha against the germination and radicle growth of Cicer arietinum and Triticum aestivum. Pharma Res 4:166–169

    Article  CAS  Google Scholar 

  • Chevalier G (1979) L’Espece Tuber aestivum Vitt.: II—Ecologie. The International Society for Mushroom. Science 10:977–993

    Google Scholar 

  • Chevalier G (2010) La truffe d’Europe (Tuber aestivum): limites geographiques, ecologie et culture. Aust J Mycol 19:249–259

    Google Scholar 

  • Chou CH (1999) Roles of allelopathy in plant biodiversity and sustainable agriculture. Crit Rev Plant Sci 18:609–636

    Article  Google Scholar 

  • Christopolous V, Psoma P, Diamandis S (2013) Site characteristics of Tuber magnatum in Greece. Acta Mycol 48:27–32

    Article  Google Scholar 

  • Comandini O, Contu M, Rinaldi AC (2006) An overview of Cistus ectomycorrhizal fungi. Mycorrhiza 16:381–395

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Ortega R, Lara-Núñez A, Anaya AL (2007) Allelochemical stress can trigger oxidative damage in receptor plants: mode of action of phytotoxicity. Plant Signal Behav 2:269–270

    Article  PubMed  PubMed Central  Google Scholar 

  • Cullere L, Ferreira V, Chevret B, Venturini ME, Sánchez-Gimeno AC, Blanco D (2010) Characterisation of aroma active compounds in black truffles (Tuber melanosporum) and summer truffles (Tuber aestivum) by gas chromatography-olfactometry. Food Chem 122:300–306

    Article  CAS  Google Scholar 

  • Desbois AD, Smith VJ (2010) Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 85:1629–1642

    Article  CAS  PubMed  Google Scholar 

  • Duke SO, Scheffler BE, Dayan FE (2001) Allelochemicals as herbicides. In: Bonjoch NP, Reigosa MJ (eds). 1st European OECD Allelopathy Symposium: Physiological aspects of allelopathy, Vigo, Spain. Printed by Gamesal, SA. pp 47–59

    Google Scholar 

  • Duke SO, Bajsa J, Pan Z (2013) Omics methods for probing the mode of action of natural and synthetic phytotoxins. J Chem Ecol 39:333–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eaton G, Ayres M (2002) Plasticity and constraint in growth and protein mineralization of ectomycorrhizal fungi under simulated nitrogen deposition. Mycologia 94:921–932

    Article  CAS  PubMed  Google Scholar 

  • Figliuolo G, Trupo G, Mang S (2013) A realized Tuber magnatum niche in the upper Sinni area (South Italy). Open J Genet 3:102–110

    Article  Google Scholar 

  • Fouillen L, Colsch B, Lessire R (2013) The lipid world concept of plant lipidomics. Adv Bot Res 67:331–376

    Article  CAS  Google Scholar 

  • Garcia-Montero LG, Moreno D, Monleon VJ, Arredondo-Ruiz F (2014) Natural production of Tuber aestivum in central Spain: Pinus spp. versus Quercus spp. brûles. For Syst 23:394–399

    Google Scholar 

  • Gerke J, Braus GH (2014) Manipulation of fungal development as source of novel secondary metabolites for biotechnology. Appl Microbiol Biotechnol 98:8443–8455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gezer K, Kaygusuz O, Çelik A, Işiloğlu M (2014) Ecological characteristics of truffles growing in Denizli Province, Turkey. J Food Agric Environ 12:1105–1109

    Google Scholar 

  • Gogan AC, Nagy Z, Dégi Z, Bagi I, Dimény J (2012) Ecological characteristics of a Hungarian summer truffle (Tuber aestivum Vittad.) producing area. Acta Mycol 47:133–138

    Article  Google Scholar 

  • Granetti B, De Angelis A, Materozzi G (2005) Umbria terra di tartufi. Assessorato Regionale Agricoltura, Foreste, Caccia e Pesca, Umbra, p 303

    Google Scholar 

  • Gryndler M, Hršelová H, Soukupová L, Streiblová E, Valda S, Borovička J, Gryndlerová H, Gažo J, Miko M (2011) Detection of summer truffle (Tuber aestivum Vittad.) in ectomycorrhizae and in soil using specific primers. FEMS Microbiol Lett 318:84–91

    Article  CAS  PubMed  Google Scholar 

  • Hall IR, Brown GT, Zambonelli A (2007) Taming the truffle, the history, lore and science of the ultimate mushroom. Timber Press, Portland

    Google Scholar 

  • Han X, Yang K, Gross RW (2012) Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev 31:134–178

    Article  CAS  PubMed  Google Scholar 

  • Hartler J, Tharakan R, Köfeler HC, Graham DR, Thallinger GG (2013) Bioinformatics tools and challenges in structural analysis of lipidomics MS/MS data. Brief Bioinform 14:375–390

    Article  CAS  PubMed  Google Scholar 

  • Heisey RM, Deprank J, Putnam AR (1985) A survey of soil microorganisms for herbicidal activity. In: Thompson AC (ed) The chemistry of allelopathy. American Chemical Society, Washington, DC

    Google Scholar 

  • Hilszczanska D, Rosa-Gruszecka A, Szmidla H (2014) Characteristic of Tuber spp. localities in natural stands with emphasis on plant species composition. Acta Mycol 49:267–277

    Article  Google Scholar 

  • Iotti M, Lancellotti E, Hall I, Zambonelli A (2010) The ectomycorrhizal community in natural Tuber borchii grounds. FEMS Microbiol Ecol 72:250–260

    Article  CAS  PubMed  Google Scholar 

  • Iotti M, Leonardi M, Oddis M, Salerni E, Baraldi E, Zambonelli A (2012) Development and validation of a real-time PCR assay for detection and quantification of Tuber magnatum in soil. BMC Microbiol 12:1471–2180

    Article  CAS  Google Scholar 

  • Iotti M, Leonardi M, Lancellotti E, Salerni E, Oddis M, Leonardi P, Perini C, Pacioni G, Zambonelli A (2014) Spatio-temporal dynamic of Tuber magnatum mycelium in natural truffle grounds. PLoS One 9:e115921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeandroz S, Murat C, Wang Y, Bonfante P, Le Tacon F (2008) Molecular phylogeny and historical biogeography of the genus Tuber, the ‘true truffles’. J Biogeogr 35:815–829

    Article  Google Scholar 

  • Kakisawa H, Asari F, Kusumi T, Toma T, Sakurai T, Oohusa T, Hara Y, Chihara M (1988) An allelopathic fatty-acid from the brown alga Cladosiphon okamuranus. Phytochemistry 27:731–735

    Article  CAS  Google Scholar 

  • Keller NP, Turner G (2012) Fungal secondary metabolism: methods and protocols, methods in molecular biology, vol 944. Springer, New York

    Book  Google Scholar 

  • Khaliq A, Matloob A, Aslam F, Mushtaq MN, Khan MB (2012) Toxic action of aqueous wheat straw extract on horse e purslane. Planta Daninha 30:269–278

    Article  Google Scholar 

  • Khanh TD, Elzaawely AA, Chung IM, Ahn JK, Tawata S, Xuan TD (2007) Role of allelochemical for weed management in rice. Allelopathy J 19:85–96

    Google Scholar 

  • Kim KW, Kim KU (2000) Searching for rice allelochemicals. In: Kim KU, Shin DH (eds), Proceedings of the international workshop on rice allelopathy, Tageu, Korea, pp 73–78

    Google Scholar 

  • Lam SM, Shui G (2013) Lipidomics as a principal pool for advancing biomedical research. J Genet Genomics 40:375–390

    Article  CAS  PubMed  Google Scholar 

  • Lawrynowicz M, Krzyszczyk T, Faldziński M (2008) Occurrence of black truffles in Poland. Acta Mycol 43:143–151

    Article  Google Scholar 

  • Le Tacon F, Zeller B, Plain C, Hossann C, Bréchet C, Robin C (2013) Carbon transfer from the host to Tuber melanosporum mycorrhizas and ascocarps followed using a 13C pulse-labeling technique. PLoS One 8:e64626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li ZH, Wang Q, Xiao R, Pan CD, Jiang DA (2010) Phenolics and plant allelopathy. Molecules 15:8933–8952

    Article  CAS  PubMed  Google Scholar 

  • Li M, Zhou Z, Nie H, Bai Y, Liu H (2011) Recent advances of chromatography and mass spectrometry in lipidomics. Anal Bioanal Chem 399:243–249

    Article  CAS  PubMed  Google Scholar 

  • Lynch JM, Clark SJ (1984) Effects of microbial colonization of barley (Hordeum vulgare L.) roots on seedling growth. J Appl Bacteriol 56:47–52

    Article  Google Scholar 

  • Macias FA, Chinchilla N, Varela RM, Molinillo JMG (2006) Bioactive steroids from Oryza sativa L. Steroids 71:603–608

    Article  CAS  PubMed  Google Scholar 

  • Mamoun M, Olivier JM (1997) Mycorrhizal inoculation of cloned hazels by Tuber melanosporum: effect of soil disinfestation and co-culture with Festuca ovina. Plant Soil 188:221–226

    Article  CAS  Google Scholar 

  • Mardani R, Yousefi AR, Fotovat R, Oveisi M (2014) New bioassay method to find the allelopathic potential of wheat cultivars on rye (Secale cereale L.) seedlings. Allelopathy J 33:53–62

    Google Scholar 

  • Martin JF, García-Estrada C, Zeilinger S (2014) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New York

    Book  Google Scholar 

  • Milenkovic M, Marjanović Ž, Grebenc T, Glišić A (2009) Ecological specifity and molecular diversity of truffles (genus Tuber) originating from mid-west of the Balkan Peninsula. Sidowia 62:67–87

    Google Scholar 

  • Molisch H (1937) The influence of one plant on another: allelopathy. Scientific Publishers, India

    Google Scholar 

  • Mominul Islam AKM, Kato-Noguchi H (2013) Plant growth inhibitory activity of medicinal plant Hyptis suaveolens: could allelopathy be a cause. Emir J Food Agric 25:692–701

    Google Scholar 

  • Muller CH (1966) The role of chemical inhibition (allelopathy) in vegetational composition. Bull Torrey Bot Club 93:332–351

    Article  CAS  Google Scholar 

  • Murat C, Rubini A, Riccioni C, De la Varga H, Akroume E, Belfiori B, Guaragno M, Le Tacon F, Robin C, Halkett F, Martin F, Paolocci F (2013) Fine-scale spatial genetic structure of the black truffle (Tuber melanosporum) investigated with neutral microsatellites and functional mating type genes. New Phytol 199:176–187

    Article  CAS  PubMed  Google Scholar 

  • Noguchi HK (2008) Allelochemicals released from rice plants. Jpn J Plant Sci 2:18–25

    Google Scholar 

  • Olivera A, Fischer CR, Bonet JA, Martìnez de Aragòn J, Oliach D, Colinas C (2011) Weed management and irrigation are key treatment in emerging black truffle (Tuber melanosporum) cultivation. New For 42:227–239

    Article  Google Scholar 

  • Olivera A, Bonet JA, Palacio L, Liu B, Colinas C (2014) Weed control modified Tuber melanosporum mycelial expansion in young oak plantations. Ann For Sci 71:495–504

    Article  Google Scholar 

  • Olivier JPM, Savignac JC, Sourzat P (2012) Truffe et trufficulture. Fanlac, Périgueux, France, p 398

    Google Scholar 

  • Otsing E, Tedersoo L (2015) Temporal dynamics of ectomycorrhizal fungi and persistence of Tuber melanosporum in inoculated Quercus robur seedlings in North Europe. Mycorrhiza 25:61–66

    Article  PubMed  Google Scholar 

  • Pagiotti R, Angelini P, Rubini A, Tirillini B, Granetti B, Venanzoni R (2011) Identification and characterisation of human pathogenic filamentous fungi and susceptibility to Thymus schimperi essential oil. Mycoses 54:e364–e376

    Article  PubMed  Google Scholar 

  • Parlade J, De la Varga H, De Miguel AM, Sáez R, Pera J (2013) Quantification of extraradical mycelium of Tuber melanosporum in soils from truffle orchards in northern Spain. Mycorrhiza 23:99–106

    Article  PubMed  Google Scholar 

  • Payen T, Murat C, Bonito G (2014) Truffle phylogenomics: new insights into truffle evolution and truffle life cycle. In: Martin F (ed) Advances in botanical research, vol 70. Elsevier Academic Press, London, pp 211–234

    Google Scholar 

  • Perotto S, Angelini P, Bianciotto V, Bonfante P, Girlanda M, Kull T, Mello A, Pecoraro L, Perini C, Persiani A, Saitta A, Sarrocco S, Vannacci G, Venanzoni R, Venturella G, Selosse MA (2013) Interactions of fungi with other organisms. Plant Biosyst 147:208–218

    Article  Google Scholar 

  • Picco AM, Angelini P, Ciccarone C, Franceschini A, Ragazzi A, Rodolfi M, Varese GC, Zotti M (2011) Biodiversity of emerging pathogenic and invasive fungi in plants, animals and humans in Italy. Plant Biosyst 145:988–996

    Article  Google Scholar 

  • Piltaver A, Ratosa I (2006) A contribution to better knowledge of hypogeous fungi in Slovenia. J For 64:303–312

    Google Scholar 

  • Quintana N, Kassis EG, Stermitz FR, Vivanco JM (2009) Phytotoxic compounds from roots of Centaurea diffusa Lam. Plant Signal Behav 4:9–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reicosky DC, Allmaras RR, Shrestha A (2003) Advances in tillage research in North American cropping systems. In: Shrestha A (ed) Cropping systems: trends and advances. Part I. Haworth, New York, pp 75–125

    Google Scholar 

  • Reigosa MJ, Pedrol N, González L (2006) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, The Netherlands, pp 451–463

    Book  Google Scholar 

  • Reyna S, Garcia-Barreda S (2014) Black truffle cultivation: a global reality. For Syst 23:317–328

    Google Scholar 

  • Ribeiro B, de Pinho PG, Andrade PB, Baptista P, Valentão P (2009) Fatty acid composition of wild edible mushrooms species: a comparative study. Microchem J 93:29–35

    Article  CAS  Google Scholar 

  • Ricard JM, Bergounoux F, Callot G, Chevalier G, Olivier JM, Pargney JC, Sourzat P (2003) La Truffe. Guide technique de trufficulture. Centre Technique Interprofessionnel Fruits Légumes, Paris

    Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic, London, UK, p 422

    Google Scholar 

  • Rice EL (1995) Biological control of weeds and plant diseases: advances in applied allelopathy. University of Oklahoma Press, Oklahoma

    Google Scholar 

  • Rubini A, Paolocci F, Riccioni C, Vendramin GG, Arcioni S (2005) Genetic and phylogeographic structures of the symbiotic fungus Tuber magnatum. Appl Environ Microbiol 71:6584–6589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubini A, Belfiori B, Riccioni C, Arcioni S, Martin F, Paolocci F (2011) Tuber melanosporum: mating type distribution in a natural plantation and dynamics of strains of different mating types on the roots of nursery-inoculated host plants. New Phytol 189:723–735

    Article  PubMed  Google Scholar 

  • Salam MA, Kato-Noguchi H (2010) Allelopathic potential of methanol extract of Bangladesh rice seedlings. Asian J Crop Sci 2:70–77

    Article  Google Scholar 

  • Salerni E, Gardin L, Baglioni F, Perini C (2013) Effects of wild boar grazing on the yield of summer truffle (Tuscany, Italy). Acta Mycol 48:73–80

    Article  Google Scholar 

  • Sancholle M, Weete JD, Kulifaj M, Montant C (1988) Changes in lipid composition during ascocarp development of the truffle Tuber melanosporum. Mycologia 80:900–903

    Article  CAS  Google Scholar 

  • Schone C, Höfler H, Walch A (2013) MALDI imaging mass spectrometry in cancer research: combining proteomic profiling and histological evaluation. Clin Biochem 46:539–545

    Article  PubMed  CAS  Google Scholar 

  • Selim SM, Zayed MS, Atta HM (2012) Evaluation of phytotoxicity of compost during composting process. J Nat Sci 10:69–77

    Google Scholar 

  • Splivallo R (2008) Biological significance of truffle secondary metabolites. In: Karlowsky P (ed) Secondary metabolites in soil ecology Part III. Springer, Berlin, pp 141–165

    Chapter  Google Scholar 

  • Splivallo R, Bossi S, Maffei M, Bonfante P (2007a) Discrimination of truffle fruiting body versus mycelial aromas by stir bar sorptive extraction. Phytochemistry 68:2584–2598

    Article  CAS  PubMed  Google Scholar 

  • Splivallo R, Novero M, Bertea C, Bossi S, Bonfante P (2007b) Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol 175:417–424

    Article  CAS  PubMed  Google Scholar 

  • Splivallo R, Ottonello S, Mello A, Karlovsky P (2011) Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol 189:688–699

    Article  CAS  PubMed  Google Scholar 

  • Stobbe U, Stobbe A, Sproll L, Tegel W, Peter M, Büntgen U, Egli S (2013) New evidence for the symbiosis between Tuber aestivum and Picea abies. Mycorrhiza 23:669–673

    Article  CAS  PubMed  Google Scholar 

  • Storch J, McDermott L (2009) Structural and functional analysis of fatty acid-binding proteins. J Lipid Res 50S:S126–S131

    Google Scholar 

  • Streiblova E, Gryndlerová H, Valda S, Gryndler M (2010) Tuber aestivum—hypogeous fungus. Czech Mycol 61:163–173

    Google Scholar 

  • Streiblova E, Gryndlerová H, Gryndler M (2012) Truffle brûlé: an efficient fungal life strategy. FEMS Microbiol Ecol 80:1–8

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Li YY, Li HM, Wan DJ, Tang YJ (2011) Comparison of lipid content and fatty acid composition between Tuber fermentation mycelia and natural fruiting bodies. J Agric Food Chem 59:4736–4742

    Article  CAS  PubMed  Google Scholar 

  • Taschen E, Sauve M, Taudiere A, Parlade J, Selosse M, Richard F (2015) Whose truffle is this. Distribution patterns of ECM fungal diversity in Tuber melanosporum brûlés developed in multi-host Mediterranean plant communities. Environ Microbiol 17:2747–2761

    Article  PubMed  Google Scholar 

  • Ullrich F, Grosch W (1987) Identification of the most intense volatile flavour compounds formed during autoxidation of linoleic acid. Eur Food Res Technol 184:277–282

    CAS  Google Scholar 

  • Weden C, Chevalier G, Danell E (2004) Tuber aestivum (syn. T. uncinatum) biotopes and their history on Gotland, Sweden. Mycol Res 108:304–310

    Article  PubMed  Google Scholar 

  • Yun W, Liu PG (2009) Achievements and challenges of research on truffles in China. Acta Bot Yunnanica 16S:1–9

    Google Scholar 

  • Zacchi L, Vaughan-Martini A, Angelini P (2003) Yeast distribution in a truffle field ecosystem. Ann Microbiol 53:275–282

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Angelini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Angelini, P. et al. (2016). Isolation and Identification of Allelochemicals from Ascocarp of Tuber Species. In: Hakeem, K., Akhtar, M. (eds) Plant, Soil and Microbes. Springer, Cham. https://doi.org/10.1007/978-3-319-29573-2_11

Download citation

Publish with us

Policies and ethics