Skip to main content

The Developmental Origins of Health and Disease: Adaptation Reconsidered

  • Chapter
  • First Online:
Evolutionary Thinking in Medicine

Abstract

It is now well established that an individual’s experience in the womb can have long-term consequences for their health and well-being. From an evolutionary perspective, it can be predicted that organisms will respond to their early conditions adaptively, maximising their prospects for survival and reproductive prospects under the circumstances. However, relatively little attention is given to the fact that there are multiple ways by which such ‘developmental plasticity’ may evolve. It is necessary to consider kinds of plasticity that can involve something other than an individual organism adapting to an external physical environment. Notably, adaptive developmental plasticity occurs between traits within an individual’s body, as well as between individuals (e.g. between mother and foetus). Taking such an inclusive perspective on the nature of developmental plasticity suggests alternative conclusions to the interpretation of patterns of health and disease, and to which kinds of intervention might be expected to be effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barker DJP (2007) The origins of the developmental origins theory. J Intern Med 261:412–417. doi:10.1111/j.1365-2796.2007.01809.x

    Article  CAS  PubMed  Google Scholar 

  2. Barker DJP, Osmond C (1986) Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 327:1077–1081. doi:10.1016/S0140-6736(86)91340-1

    Article  Google Scholar 

  3. Huxley R, Owen CG, Whincup PH et al (2007) Is birth weight a risk factor for ischemic heart disease in later life? Am J Clin Nutr 85:1244–1250

    CAS  PubMed  Google Scholar 

  4. Harder T, Rodekamp E, Schellong K et al (2007) Birth weight and subsequent risk of type 2 diabetes: a meta-analysis. Am J Epidemiol 165:849–857. doi:10.1093/aje/kwk071

    Article  PubMed  Google Scholar 

  5. Whincup PH, Kaye SJ, Owen CG et al (2008) Birth weight and risk of type 2 diabetes: a systematic review. JAMA-J Am Med Assoc 300:2886–2897. doi:10.1001/jama.2008.886

    Article  CAS  Google Scholar 

  6. Bertram CE, Hanson MA (2001) Animal models and programming of the metabolic syndrome. Brit Med Bull 60:103–121. doi:10.1093/bmb/60.1.103

    Article  CAS  PubMed  Google Scholar 

  7. Lumey LH, Stein AD, Susser E (2011) Prenatal famine and adult health. Annu Rev Public Health 32:237–262. doi:10.1146/annurev-publhealth-031210-101230

    Article  CAS  PubMed  Google Scholar 

  8. Roseboom TJ, Painter RC, van Abeelen AFM et al (2011) Hungry in the womb: What are the consequences? Lessons from the Dutch famine. Maturitas 70:141–145. doi:10.1016/j.maturitas.2011.06.017

    Article  PubMed  Google Scholar 

  9. Bateson P, Gluckman PD, Hanson M (2014) The biology of developmental plasticity and the Predictive Adaptive Response hypothesis. J Physiol-London 592:2357–2368. doi:10.1113/jphysiol.2014.271460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jones JH (2004) Fetal programming: adaptive life-history tactics or making the best of a bad start? Am J Hum Biol 17:22–33. doi:10.1002/ajhb.20099

    Article  Google Scholar 

  11. Kuzawa CW, Quinn EA (2009) Developmental origins of adult function and health: evolutionary hypotheses. Annu Rev Anthropol 38:131–147. doi:10.1146/annurev-anthro-091908-164350

    Article  Google Scholar 

  12. Rickard IJ, Lummaa V (2007) The predictive adaptive response and metabolic syndrome: challenges for the hypothesis. Trends Endocrinol Metab 18:94–99. doi:10.1016/j.tem.2007.02.004

    Article  CAS  PubMed  Google Scholar 

  13. Wells JCK (2003) The thrifty phenotype hypothesis: thrifty offspring or thrifty mother? J Theor Biol 221:143–161. doi:10.1006/jtbi.2003.3183

    Article  PubMed  Google Scholar 

  14. Baschat DAA (2004) Fetal responses to placental insufficiency: an update. BJOG-Int J Obstet Gy 111:1031–1041. doi:10.1111/j.1471-0528.2004.00273.x

    Article  CAS  Google Scholar 

  15. Gluckman PD, Hanson MA (2008) Developmental and epigenetic pathways to obesity: an evolutionary-developmental perspective. Int J Obes 32(Suppl 7):S62–S71. doi:10.1038/ijo.2008.240

    Article  CAS  Google Scholar 

  16. Gluckman PD, Hanson M, Zimmet P, Forrester T (2011) Losing the war against obesity: the need for a developmental perspective. Sci Transl Med 3:1–4. doi:10.1126/scitranslmed.3002554

    Article  Google Scholar 

  17. Hanson MA, Gluckman PD, Ma RC et al (2012) Early life opportunities for prevention of diabetes in low and middle income countries. BMC Public Health 12:1025. doi:10.1017/S0029665112000055

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vickers MH (2011) Developmental programming of the metabolic syndrome—critical windows for intervention. World J Diabetes 2:137–148. doi:10.4239/wjd.v2.i9.137

    Article  PubMed  PubMed Central  Google Scholar 

  19. Doblhammer G, van den Berg GJ, Lumey LH (2013) A re-analysis of the long-term effects on life expectancy of the Great Finnish Famine of 1866–68. Pop Stud-J Demog 67:309–322. doi:10.1080/00324728.2013.809140

    Article  Google Scholar 

  20. Ekamper P, van Poppel F, Stein AD, Lumey LH (2014) Independent and additive association of prenatal famine exposure and intermediary life conditions with adult mortality between age 18–63 years. Soc Sci Med 232–239. doi:10.1016/j.socscimed.2013.10.027

    Google Scholar 

  21. Rickard IJ, Holopainen J, Helama S et al (2010) Food availability at birth limited reproductive success in historical humans. Ecology 91:3515–3525. doi:10.1890/10-0019.1

    Article  PubMed  Google Scholar 

  22. Song S (2010) Mortality consequences of the 1959–1961 Great Leap Forward famine in China: debilitation, selection, and mortality crossovers. Soc Sci Med 71:551–558. doi:10.1016/j.socscimed.2010.04.034

    Article  PubMed  Google Scholar 

  23. van Abeelen AF, Veenendaal MV, Painter RC et al (2011) Survival effects of prenatal famine exposure. Am J Clin Nutr 95:179–183. doi:10.3945/ajcn.111.022038

    Article  PubMed  Google Scholar 

  24. van den Berg GJ, Lindeboom M, Portrait F (2013) The Dutch Potato Famine 1846–1847: a study on the relationships between early-life exposure and later-life mortality. In: Lumey LH, Vaiserman A (eds) Early Life Nutrition and Adult Health Development. Nova Science Publishers, New York, pp 229–249

    Google Scholar 

  25. Monaghan P (2008) Early growth conditions, phenotypic development and environmental change. Philos Trans R Soc Lond B Biol Sci 363:1635–1645. doi:10.1016/j.biopsycho.2006.01.009

    Article  PubMed  PubMed Central  Google Scholar 

  26. Uller T, Nakagawa S, English S (2013) Weak evidence for anticipatory parental effects in plants and animals. J Evol Biol 26:2161–2170. doi:10.1111/jeb.12212

    Article  CAS  PubMed  Google Scholar 

  27. Douhard M, Plard F, Gaillard JM et al (2014) Fitness consequences of environmental conditions at different life stages in a long-lived vertebrate. P Roy Soci B-Biol Sci 281:20140276. doi:10.1530/eje.1.02233

    Article  Google Scholar 

  28. Hayward A, Rickard IJ, Lummaa V (2013) Influence of early-life nutrition on mortality and reproductive success during a subsequent famine in a pre-industrial population. P Natl Acad Sci USA 110:13886–13891. doi:10.1073/pnas.1301817110

    Google Scholar 

  29. Hayward A, Lummaa V (2013) Testing the evolutionary basis of the predictive adaptive response hypothesis in a preindustrial human population. Evolution 106–117. doi:10.1093/emph/eot007

    Google Scholar 

  30. Drent RH, Daan S (1980) The prudent parent: energetic adjustments in avian breeding. Ardea 68:225–252

    Google Scholar 

  31. Wells JCK (2010) Maternal capital and the metabolic ghetto: an evolutionary perspective on the transgenerational basis of health inequalities. Am J Hum Biol 22:1–17. doi:10.1002/ajhb.20994

    Article  PubMed  Google Scholar 

  32. Hawkesworth S, Prentice AM, Fulford AJ, Moore SE (2009) Maternal protein-energy supplementation does not affect adolescent blood pressure in The Gambia. Int J Epidemiol 38:119–127. doi:10.1093/ije/dyn156

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hawkesworth S, Walker CG, Sawo Y et al (2011) Nutritional supplementation during pregnancy and offspring cardiovascular disease risk in The Gambia. Am J Clin Nutr 94:1853S–1860S. doi:10.3945/ajcn.110.000877

    Article  CAS  PubMed  Google Scholar 

  34. Hawkesworth S, Wagatsuma Y, Kahn AI et al (2013) Combined food and micronutrient supplements during pregnancy have limited impact on child blood pressure and kidney function in rural Bangladesh. J Nutr 143:728–734. doi:10.3945/jn.112.168518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Macleod J, Tang L, Hobbs FDR et al (2013) Effects of nutritional supplementation during pregnancy on early adult disease risk: follow up of offspring of participants in a randomised controlled trial investigating effects of supplementation on infant birth weight. PLoS ONE 8:e83371. doi:10.1371/journal.pone.0083371.s001

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zelditch ML, Wood AR, Bonett RM, Swiderski DL (2008) Modularity of the rodent mandible: integrating bones, muscles, and teeth. Evol Dev 10:756–768. doi:10.1111/j.1525-142X.2008.00290.x

    Article  PubMed  Google Scholar 

  37. Klingenberg CP (2014) Studying morphological integration and modularity at multiple levels: concepts and analysis. Philos Trans R Soc Lond B Biol Sci 369:20130249. doi:10.1111/j.1558-5646.2009.00857.x

    Article  PubMed  PubMed Central  Google Scholar 

  38. Petrik J, Reusens B, Arany E et al (1999) A low protein diet alters the balance of islet cell replication and apoptosis in the fetal and neonatal rat and is associated with a reduced pancreatic expression of insulin-like growth factor-II. Endocrinology 140:4861–4873. doi:10.1210/endo.140.10.7042

    CAS  PubMed  Google Scholar 

  39. Burns SP, Desai M, Cohen RD et al (1997) Gluconeogenesis, glucose handling, and structural changes in livers of the adult offspring of rats partially deprived of protein during pregnancy and lactation. J Clin Invest 100:1768

    Google Scholar 

  40. Pinheiro DF, Pacheco PDG, Alvarenga PV et al (2013) Maternal protein restriction affects gene expression and enzyme activity of intestinal disaccharidases in adult rat offspring. Braz J Med Biol Res 46:287–292. doi:10.1590/1414-431X20122561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guan H (2004) Adipose tissue gene expression profiling reveals distinct molecular pathways that define visceral adiposity in offspring of maternal protein-restricted rats. Am J Physiol-Endoc M 288:E663–E673. doi:10.1152/ajpendo.00461.2004

    Google Scholar 

  42. Bellinger L, Lilley C, Langley-Evans SC (2007) Prenatal exposure to a maternal low-protein diet programmes a preference for high-fat foods in the young adult rat. Brit J Nutr 92:513. doi:10.1079/BJN20041224

    Article  Google Scholar 

  43. Díaz P, Powell TL, Jansson T (2014) The role of placental nutrient sensing in maternal-fetal resource allocation. Biol Reprod 91:82. doi:10.1095/biolreprod.114.121798

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fowden AL, Forhead AJ (2009) Hormones as epigenetic signals in developmental programming. Exp Physiol 94:607–625. doi:10.1113/expphysiol.2008.046359

    Article  CAS  PubMed  Google Scholar 

  45. Lancaster LT, McAdam AG, Sinervo B (2010) Maternal adjustment of egg size organizes alternative escape behaviour, promoting adaptive phenotypic integration. Evolution 64:1607–1621. doi:10.1111/j.1558-5646.2009.00941.x

    Article  PubMed  Google Scholar 

  46. Richardson SS, Daniels CR, Gillman MW et al (2014) Society: don’t blame the mothers. Nature 512:131–132. doi:10.1038/512131a

    Article  CAS  PubMed  Google Scholar 

  47. Gluckman PD, Lillycrop KA, Vickers MH et al (2007) Metabolic plasticity during mammalian development is directionally dependent on early nutritional status. P Natl Acad Sci USA 104:12796–12800. doi:10.1073/pnas.0705667104

    Article  CAS  Google Scholar 

  48. Ellis PJI, Morris TJ, Skinner BM et al (2014) Thrifty metabolic programming in rats is induced by both maternal undernutrition and postnatal leptin treatment, but masked in the presence of both: implications for models of developmental programming. BMC Genom 15:49. doi:10.1186/1471-2164-15-49

    Article  Google Scholar 

  49. Shields BM, Freathy RM, Hattersley AT (2010) Genetic influences on the association between fetal growth and susceptibility to type 2 diabetes. J Devel Orig Health Dis 1:96. doi:10.1017/S2040174410000127

    Article  CAS  Google Scholar 

  50. Braveman PA, Cubbin C, Egerter S et al (2005) Socioeconomic status in health research—One size does not fit all. JAMA 294:2879–2888. doi:10.1001/jama.294.22.2879

    Article  CAS  PubMed  Google Scholar 

  51. Shavers VL (2007) Measurement of socioeconomic status in health disparities research. J Natl Med Assoc 99:1013–1023

    PubMed  PubMed Central  Google Scholar 

  52. Jasienska G (2009) Low birth weight of contemporary African Americans: an intergenerational effect of slavery? Am J Hum Biol 21:16–24. doi:10.1002/ajhb.20824

    Article  PubMed  Google Scholar 

  53. Geronimus AT (2013) Deep integration: Letting the epigenome out of the bottle without losing sight of the structural origins of population health. Am J Public Health 103:S53–S56. doi:10.2105/AJPH.2013.301380

    Article  Google Scholar 

  54. Kaufman JS, Cooper RS, McGee DL (1997) Socioeconomic status and health in blacks and whites: the problem of residual confounding and the resiliency of race. Epidemiology 8:621–628

    CAS  PubMed  Google Scholar 

  55. Anderson PS, Renaud S, Rayfield EJ (2014) Adaptive plasticity in the mouse mandible. BMC Evol Biol 14:85. doi:10.1186/1471-2148-14-85

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hollegaard B, Byars SG, Lykke J, Boomsma JJ (2013) Parent-offspring conflict and the persistence of pregnancy-induced hypertension in modern humans. PLoS ONE 8:e56821. doi:10.1371/journal.pone.0056821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schluter D, Nychka D (1994) Exploring fitness surfaces. Am Nat 143:597–616

    Article  Google Scholar 

  58. Cottrell EC, Holmes MC, Livingstone DE et al (2012) Reconciling the nutritional and glucocorticoid hypotheses of fetal programming. Faseb J 26:1866–1874. doi:10.1096/fj.12-203489

    Article  CAS  PubMed  Google Scholar 

  59. Reynolds RM (2013) Glucocorticoid excess and the developmental origins of disease: two decades of testing the hypothesis—2012 Curt Richter Award Winner. Psychoneuroendocrino 38:1–11. doi:10.1016/j.psyneuen.2012.08.012

    Article  CAS  Google Scholar 

  60. Bolten MI, Wurmser H, Buske-Kirschbaum A et al (2011) Cortisol levels in pregnancy as a psychobiological predictor for birth weight. Arch Womens Ment Health 14:33–41. doi:10.1007/s00737-010-0183-1

    Article  PubMed  Google Scholar 

  61. Thoits PA (2010) Stress and health: major findings and policy implications. J Health Soc Behav 51:S41–S53. doi:10.1177/0022146510383499

    Article  PubMed  Google Scholar 

  62. Rickard IJ, Frankenhuis WE, Nettle D (2014) Why are childhood family factors associated with timing of maturation? A role for internal prediction. Perspect Psychol Sci 9:3–15. doi:10.1177/1745691613513467

    Article  PubMed  Google Scholar 

  63. Thorne AD, Pexton JJ, Dytham C, Mayhew PJ (2006) Small body size in an insect shifts development, prior to adult eclosion, towards early reproduction. P Roy Soci B-Biol Sci 273:1099–1103. doi:10.1093/beheco/12.5.577

    Article  Google Scholar 

  64. Gross MR (1996) Alternative reproductive strategies and tactics: diversity within sexes. Trends Ecol Evol 11:92–98

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank the editors and members of the Evolutionary Anthropology Research Group and the Anthropology of Health Research Group in the Department of Anthropology at Durham University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian J. Rickard Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rickard, I.J. (2016). The Developmental Origins of Health and Disease: Adaptation Reconsidered. In: Alvergne, A., Jenkinson, C., Faurie, C. (eds) Evolutionary Thinking in Medicine. Advances in the Evolutionary Analysis of Human Behaviour. Springer, Cham. https://doi.org/10.1007/978-3-319-29716-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29716-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29714-9

  • Online ISBN: 978-3-319-29716-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics