Skip to main content

Thermal Spray Coatings for Hot Corrosion Resistance

  • Chapter
  • First Online:
Engineering Applications of Nanotechnology

Abstract

Hot corrosion arises when metals are excited in the temperature range 700–900 °C in the existence of sulphate deposits, formed as a result of the reaction among sodium chloride and sulphur mixtures in the gas phase adjoining the metals. No alloy is resistant to hot corrosion occurrence indefinitely even though there are certain alloys that require a prolonged origination time at which the hot corrosion progression from the beginning stage to the circulation stage. Superalloys have been established for high-temperature applications. However, these alloys are not constantly able to meet both the high-temperature strength and high-temperature corrosion resistance simultaneously, so the need is to protect from hot corrosion. The high-temperature guarding system must meet numerous benchmarks, provide satisfactory environment resistance, be chemically and mechanically compatible with the substrate, be practically applicable, reliable and economically viable. This chapter briefly reviews the hot corrosion of some Ni- and Fe-base superalloys to recognise the occurrence. Extensive reviews on the hot corrosion of coatings have looked regularly since early 1970; the purpose of this chapter is not to repeat the published resources but relatively to emphasis on research developments and to point out some research forecasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Backman, R., Hupa, M., & Uppstu, E. (1987). Fouling and corrosion mechanisms in the recovery boiler superheater area. Tappi Journal, 70, 123–127.

    Google Scholar 

  • Bansal, P., Padture, N. P., & Vasiliev, A. (2003). Improved interfacial properties of Al2O3–13 wt% TiO2 plasma sprayed coatings derived from nanocrytalline powders. Acta Materialia, 51, 2959–2970.

    Article  Google Scholar 

  • Beltran, A. M., & Shores, D. A. (1972). Hot corrosion. In C. T. Sims & W. C. Hagel (Eds.), Shores. NY: Wiley Publ., John Wiley and Sons. (Chapter 11).

    Google Scholar 

  • Bhushan, B., & Gupta, B. K. (1991). Handbook of tribology: Materials, coatings and surface treatments. New York: McGraw-Hill.

    Google Scholar 

  • Bornstein, N. S., & DeCrescente, M. A. (1969). Relationship between compounds of sodium and sulfur and sulfidation. Transactions of the Metallurgical Society of AIME, 245(9), 1947.

    Google Scholar 

  • Bornstein, N. S., DeCrescente, M. A., & Roth, H. A. (1973). The relationship between relative oxide ion content of Na2SO4, the presence of liquid metal oxides and sulfidation attack. Metallurgical Transactions, 4, 1799–1810.

    Article  Google Scholar 

  • Bornstein, N. S., Decrescente, M. A., & Roth, H. A. (1975). Effect of vanadium and sodium compounds on the accelerated oxidation of nickel base alloys. In: Proceedings of the Conference on Gas Turbine Materials in the Marine Environment, MMIC-75–27 (pp. 115–160). Columbus, Ohio, USA.

    Google Scholar 

  • Deb, D., Iyer, S. R., & Radhakrishnan, V. M. (1996). A comparative study of oxidation and hot corrosion of a cast nickel base superalloy in different corrosive environments. Materials Letters, 29, 19–23.

    Article  Google Scholar 

  • Ding, C., Chen, H., Liu, X., & Zeng, Y. (2003). Plasma sprayed nanostructure zirconia coatings for wear resistance. In C. Moreau & B. Marple (Eds.), Thermal spray 2003: Advancing the science & applying the technology (pp. 455–458). Materials Park, Ohio, USA: ASM International.

    Google Scholar 

  • Eliaz, N., Shemesh, G., & Latanision, R. M. (2002). Hot corrosion in gas turbine components. Engineering Failure Analysis, 9, 31–43.

    Article  Google Scholar 

  • Fairman, L. (1962). Technical note: Mechanism of accelerated oxidation by vanadium-containing fuel ash. Corrosion Science, 2, 293–296.

    Article  Google Scholar 

  • Gitanjaly, Prakash, S., & Singh, S. (2002). Effects of MgO and CaO on hot corrosion of Fe base superalloy superfer 800H in Na2SO4–60 %V2O5 environment. British Corrosion Journal, 37(1), 56–62.

    Article  Google Scholar 

  • Gledhill, H. C., Turner, I. G., & Doyle, C. (1999). Direct morphological comparison of vacuum plasma sprayed and detonation gun sprayed hydroxyapatite coatings for orthopedic applications. Biomaterials, 20, 315–322.

    Article  Google Scholar 

  • Goebel, J. A., & Pettit, F. S. (1970a). Na2SO4-induced accelerated oxidation (hot corrosion) of nickel. Metallurgical Transactions, 1, 1943–1954.

    Article  Google Scholar 

  • Goebel, J. A., & Pettit, F. S. (1970b). The influence of sulphides on the oxidation behaviour of nickel-base alloys. Metallurgical Transactions, 1, 3421–3429.

    Article  Google Scholar 

  • Goebel, J. A., Pettit, F. S., & Goward, G. W. (1973). Mechanisms for the hot corrosion of nickel-base alloys. Metallurgical Transactions, 4, 261–275.

    Article  Google Scholar 

  • Guo, M. H., Wang, Q. M., Gong, J., Sun, C., Huang, R. F., & Wen, L. S. (2006). Oxidation and hot corrosion behavior of gradient NiCoCrAlYSiB coatings deposited by a combination of arc ion plating and magnetron sputtering techniques. Corrosion Science, 48, 2750–2764.

    Article  Google Scholar 

  • Gurrappa, I. (1999). Hot corrosion behavior of CM 247 LC alloy in Na2SO4 and NaCl environments. Oxidation of Metals, 51(5), 353–382.

    Article  Google Scholar 

  • Gurrappa, I. (2000). Hot corrosion of protective coatings. Materials and Manufacturing Processes, 15(5), 761–773.

    Article  Google Scholar 

  • Gurrappa, I. (2003). Influence of alloying elements on hot corrosion of superalloys and coatings: Necessity of smart coatings for gas turbine engines. Journal of Materials Science and Technology, 19(2), 178–183.

    Article  Google Scholar 

  • Hancock, P. (1987). Vanadic and chloride attack of superalloys. Materials Science and Technology, 3, 536–544.

    Article  Google Scholar 

  • Handbook, M. (1975). Failure analysis and prevention (Vol. 10). Metals Park OH, USA: ASM Publication.

    Google Scholar 

  • Hao, D., Hua, W., Liu, J., Gong, J., Sun, C., & Wen, L. (2005). Influence of process variables on the qualities of detonation gun sprayed WC–Co coatings. Materials Science and Engineering: A, 408, 202–210.

    Article  Google Scholar 

  • Heath, G. R., Heimgartner, P., Irons, G., Miller, R., & Gustafsson, S. (1997). An assessment of thermal spray coating technologies for high temperature corrosion protection. Materials Science Forum, 251–54, 809–816.

    Article  Google Scholar 

  • Herman, H. (1988). Plasma sprayed coatings. Scientific American, 259(3), 78–83.

    Article  Google Scholar 

  • Hocking, M. G. (1993). Coatings resistant to erosive/corrosive and severe environments. Surface and Coatings Technology, 62, 460–466.

    Article  Google Scholar 

  • Hwang, Y. S., & Rapp, R. A. (1989). Thermochemistry and solubilities of oxides in sodium sulfate-vanadate solutions. Corrosion, 45(11), 933–937.

    Article  Google Scholar 

  • Iyer, S. R., Iyer, K. J. L., & Radhakrishan, V. M. (1987). High temperature corrosion of a Ni-base superalloy by Vanadium. In Proceedings of the 10th ICMC (Vol. IV, pp. 3665–3670) Madras, India.

    Google Scholar 

  • Jordan, E. H., Gell, M., Sohn, Y. H., Goberman, D., Shaw, L., Jiang, S., et al. (2001). Fabrication and evaluation of plasma sprayed nanostructured alumina-titania coatings with superior properties. Materials Science and Engineering: A, 301, 80–89.

    Article  Google Scholar 

  • Kamachi Mudali, U., Bhuvaneswaran, N., Shankar, P., & Raj, Baldev. (2004). Corrosion behaviour of intermetallic aluminide coatings on nitrogen-containing austenitic stainless steels. Corrosion Science, 46, 2867–2892.

    Article  Google Scholar 

  • Kamal, S., Jayaganthan, R., & Prakash, S. (2009). Evaluation of cyclic hot corrosion behaviour of detonation gun sprayed Cr3C2–NiCr coating on nickel and iron based superalloys. Surface and Coatings Technology, 203(8), 1004–1013.

    Article  Google Scholar 

  • Kamal, S., Jayaganthan, R., & Prakash, S. (2010). Hot corrosion studies of detonation-gun-sprayed NiCrAlY + 0.4 wt%CeO2 coatings on superalloys in molten salt environment. Journal of Materials Engineering and Performance, 20(6), 1068–1077.

    Article  Google Scholar 

  • Kamal, S., Jayaganthan, R., Prakash, S., & Kumar, Sanjay. (2008). Hot corrosion behavior of detonation gun sprayed Cr3C2–NiCr coatings on Ni and Fe-based superalloys in Na2SO4–60 % V2O5 environment at 900 °C. Journal of Alloys and Compounds, 463(1-2), 358–372.

    Article  Google Scholar 

  • Kawase, R., & Nakano, A. (1996). Production of heat and corrosion-resistant plastic coating. In Proceedings of the 9th National Thermal Spray Conference (pp. 257–262). Cincinnati, Ohio.

    Google Scholar 

  • Kerby, R. C., & Wilson, J. R. (1972). Electrical conduction properties of liquid vanadates. II. The sodium. Canadian Journal of Chemistry, 58, 2871–2876.

    Article  Google Scholar 

  • Khajavi, M. R., & Shariat, M. H. (2004). Failure of first stage gas turbine blades. Engineering Failure Analysis, 11, 589–597.

    Article  Google Scholar 

  • Khana, A. S., & Jha, S. K. (1998). Degradation of materials under hot corrosion conditions. Transactions of the Indian Institute of Metals, 51(5), 279–290.

    Google Scholar 

  • Kim, J.-H., Yang, H.-S., Baik, K.-H., Seong, B. G., Lee, C.-H., & Hwang, S. Y. (2006). Development and properties of nanostructured thermal spray coatings. Current Applied Physics, 6(6), 1002–1006.

    Article  Google Scholar 

  • Knotek, O. (2001). Thermal spraying and detonation spray gun processes. In R. F. Bunshah (Ed.) Handbook of hard coatings: Deposition technologies, properties and applications. Noyes Pub. Park Ridge, New Jersey, USA/William Andrew Publishing, LLC, Norwich, New York, USA (pp. 77–107) (Chapter 3).

    Google Scholar 

  • Koch, G. H., Brongers, M. P. H., Thompson, N. G., Virmani, Y. P., & Payer, J. H. (2002). Historic congressional study: Corrosion costs and preventive strategies in the United States. Supplement to Materials Performance, 1–11.

    Google Scholar 

  • Kofstad, P. (1988). High temperature corrosion (p. 465). London, New York: Elsevier Applied Science. (Chapter 14).

    Google Scholar 

  • Kolta, G. A., Hewaidy, L. F., & Felix, N. S. (1972). Reactions between sodium sulphate and vanadium pentoxide. Thermochimica Acta, 4, 151–164.

    Article  Google Scholar 

  • Korpiola, K., & Vuoristo, P. (1996). Effect of HVOF gas velocity and fuel to oxygen ratio on the wear properties of tungsten carbide coating. In C. C. Bernt, (Ed.), Thermal spray: Practical solutions for engineering problems. Cincinnati, USA: ASM, October, 11–17.

    Google Scholar 

  • Kuroda, S., Kawakita, J., Watanabe, Makoto., & Katanoda, Hiroshi. (2008). Topical review warm spraying—a novel coating process based on high-velocity impact of solid particles. Science and Technology of Advanced Materials, 9, 1–17.

    Google Scholar 

  • Lambert, P., Champagne, B., & Arseneault, B. (1991). Oxidation and hot corrosion in Na2SO4—10 %V2O5 of Ni-17Cr-6Al-0.5Y and Ni-16Cr-5.7Al-0.47Y-5Si, MCrAlY Alloys at 7000 C. Canadian Metallurgical Quarterly, 30(2), 125–130.

    Google Scholar 

  • Leblanc, L. (2003). Abrasion and sliding wear of nanostructured ceramic coatings. In C. Moreau & B. Marple (Eds.), Thermal spray 2003: Advancing the science & applying the technology (pp. 291–299). Materials Park, Ohio, USA: ASM International.

    Google Scholar 

  • Li, Y. S., Spiegel, M., & Shimada, S. (2005). Corrosion behaviour of various model alloys With NaCl–KCl coating. Materials Chemistry and Physics, 93, 217–223.

    Article  Google Scholar 

  • Liang, Bo., & Ding, Chuanxian. (2005). Thermal shock resistances of nanostructured and conventional zirconia coatings deposited by atmospheric plasma spraying. Surface and Coatings Technology, 197, 185–192.

    Article  Google Scholar 

  • Lin, Xinhua., Zeng, Yi., Ding, Chuanxian., & Zhang, Pingyu. (2004). Effects of temperature on tribological properties of nanostructured and conventional Al2O3–3 wt% TiO2 coatings. Wear, 256, 1018–1025.

    Article  Google Scholar 

  • Liu, P. S., Liang, K. M., Zhou, H. Y., Gu, S. R., Sun, X. F., Guan, H. R., et al. (2001). Cyclic oxidation behavior of aluminide coatings on the Co-base superalloy DZ40M. Surface and Coatings Technology, 145, 75–79.

    Article  Google Scholar 

  • Luthra, K. L., & Shores, D. A. (1980). Mechanism of Na2SO4 induced corrosion at 600–900 °C. Journal of the Electrochemical Society, 127(10), 2202–2210.

    Article  Google Scholar 

  • Maledi, N. B., Potgieter, J. H., Sephton, M., Cornish, L. A., Chown, L., & Suss, R. (2006). Hot corrosion behaviour of Pt-alloys for application in the next generation of gas turbines. International Platinum Conference ‘Platinum Surges Ahead’, the Southern African Institute of Mining and Metallurgy (pp. 81–90).

    Google Scholar 

  • Marceau, J. A., & Adjorlolo, A. A. (1995). Commercial aircraft. In ASM, Corrosion tests and standards; application and interpretation (pp. 574–578). American Society for Testing and Material Society.

    Google Scholar 

  • Matthews S. J. (2004). Erosion-corrosion of Cr3C2–NiCr high velocity thermal spray coatings (Ph.D. thesis). The University of Auckland.

    Google Scholar 

  • Mevrel, R. (1989). State of the art on high-temperature corrosion-resistant coatings. Materials Science and Engineering: A, 120, 13–24.

    Article  Google Scholar 

  • Misra, A. K. (1986). Mechanism of Na2SO4-induced corrosion of molybdenum containing nickel-base superalloys at high temperatures. Journal of the Electrochemical Society, 133(5), 1029–1037.

    Article  Google Scholar 

  • Moujahid, S. E. (1987). High temperature corrosion of cast iron chains by Coal Ash. In Proceedings of the 10th ICMC (Vol. I, pp. 857–860). Madras, India.

    Google Scholar 

  • Murthy, J. K. N., & Venkataraman, B. (2006). Abrasive wear behaviour of WC–CoCr and Cr3C2–20(NiCr) deposited by HVOF and detonation spray processes. Surface and Coatings Technology, 200, 2642–2652.

    Article  Google Scholar 

  • Natesan, K. (1985). High-temperature corrosion in coal gasification systems. Corrosion, 41(11), 646–655.

    Article  Google Scholar 

  • National Materials Advisory Board. (1996). Coatings for high-temperature structural materials: Trends and opportunities (pp. 1–85). Washington, DC: National Academy Press. http://www.nap.edu/openbook/0309053811/html

  • Nelson, H. W., Krause, H. H., Ungar, E. W., Putnam, A. A., Slunder, C. J., Miller, P. D., et al. (1959). A review of available information on, corrosion and deposits in coal- and oil-fired boilers and gas turbines. Report of ASME research committee on corrosion and deposits from combustion gases. New York: Pergamon Press, ASME.

    Google Scholar 

  • Nerz, J. E., Kushner B. A., Jr., & Rotolico, A. J. (1992). Microstructural evaluation of tungsten carbide-cobalt coatings. ASM International (USA) (pp. 115–120).

    Google Scholar 

  • Nicholls, J. R. (2000). Designing oxidation-resistant coatings. JOM, 52, 28–35.

    Google Scholar 

  • Nicholls, J. R., Simms, N. J., Chan, W. Y., & Evans, H. E. (2002). Smart overlay coatings—concept and practice. Surface and Coatings Technology, 149, 236–244.

    Article  Google Scholar 

  • Nickel, H., Quadakkers, W. J., & Singheiser, L. (2002). Analysis of corrosion layers on protective coatings and high temperature materials in simulated service environments of modern power plants using SNMS, SIMS, SEM, TEM, RBS and X-ray diffraction strudies. Analytical and Bioanalytical Chemistry, 374, 581–587.

    Article  Google Scholar 

  • Nicoll, A. R. (1984). The production and performance evaluation of high temperature coatings. In K. N. Strafford, P. K. Datta, & C. G. Googan (Eds.), Coatings and surface treatment for corrosion and wear resistance. Chichester: Institution of Corros. Sci. and Techol., Birmingham, Pub. Ellis Horwood Ltd. (Chapter 13).

    Google Scholar 

  • Otero, E., Merino, M. C., Pardo, A., Biezma, M. V., & Buitrago, G. (1987). Study on corrosion products of IN657 alloy in molten salts. In Proceedings of 10th ICMC (Vol. IV, pp. 3583–3591). Madras, India.

    Google Scholar 

  • Otero, E., Pardo, A., Hernaez, J., & Perez, F. J. (1990). The hot corrosion of IN-657 superalloy in Na2SO4–V2O5 melt eutectic. Corrosion Science, 30, 677–683.

    Google Scholar 

  • Otsuka, N., & Rapp, R. A. (1990). Effects of chromate and vanadate anions on the hot corrosion of pre oxidized Ni by a thin fused Na2SO4 film at 900 °C. Journal of the Electrochemical Society, 137(1), 53–60.

    Article  Google Scholar 

  • Pettit, F. (2011). Hot corrosion of metals and alloys. Oxidation of Metals, 76, 1–21.

    Article  Google Scholar 

  • Pettit, F. S., & Giggins, C. S. (1987). Hot corrosion. In C. T. Sims, N. S. Stollof, & W. C. Hagel (Eds.), Superalloys II. N Y: Pub. Wiley Pub. (Chapter 12).

    Google Scholar 

  • Pettit, F. S., & Meier, G. H. (1985). Oxidation and hot corrosion of superalloys. In M. Gell, C. S. Kartovich, R. H. Bricknel, W. B. Kent & J. F. Radovich (Eds.), Superalloys 85 (pp. 651–687). Warrendale, Pennsylvania: Met. Soc. of AIME.

    Google Scholar 

  • Porcayo-Calderon, J., Gonzalez-Rodriguez, J. G., & Martinez, L. (1998). Protection of carbon steel against hot corrosion using thermal spray Si- and Cr-base coatings. Journal of Materials Engineering and Performance, 7, 79–87.

    Article  Google Scholar 

  • Gitanjaly, & Prakash, S. (1999). Review on effect of additives on the hot corrosion. In 5th NACE Proceedings (pp. 174-182). New Delhi, India, November 22–24.

    Google Scholar 

  • Prakash, S., Puri, D., & Singh, H. (2005). Hot corrosion behaviour of plasma sprayed coating on Ni-based superalloys in Na2SO4–60 %V2O5 environment. ISIJ International, 45(6), 886–895.

    Article  Google Scholar 

  • Prakash, S., Singh, S., Sidhu, B. S., & Madeshia, A. (2001). Tube failures in coal fired boilers. In Proceedings of the National Seminar on Advances in Material and Processing (pp. 245–253) IITR, Roorkee, India, November 9–10.

    Google Scholar 

  • Priyantha, N., Jayaweera, P., Sanjurjo, A., Lau, K., Lu, F., & Krist, K. (2003). Corrosion-resistant metallic coatings for applications in highly aggressive environments. Surface and Coatings Technology, 163–64, 31–36.

    Article  Google Scholar 

  • Rapp, R. A. (2002). Hot corrosion of materials: A fluxing mechanism. Corrosion Science, 44(2), 209–221.

    Article  Google Scholar 

  • Rapp, R. A., & Goto, K. S. (1981). The hot corrosion of metals by Molten Salts. In J. Braunstein & J. R. Selman (Eds.), Sympos. fused salts (pp. 159). Pennington, NJ: The Electrochemical Society.

    Google Scholar 

  • Rapp, R. A., & Mehl, Robert. F. (2000). Some generalities in the analyses of equilibria in lonic solutions. Metallurgical and Materials Transactions A, 31(9), 2105–2118.

    Article  Google Scholar 

  • Ravindra, T., Raghavan, S., & Kamaraj, M. (2007). Hot corrosion and oxidation behaviour of a directionally solidified nickel base superalloy. Transactions of the Indian Institute of Metals, 60, 385–392.

    Google Scholar 

  • Ren, X., & Wang, F. (2006). High-temperature oxidation and hot-corrosion behavior of a sputtered NiCrAlY coating with and without aluminizing. Surface and Coatings Technology, 201, 30–37.

    Article  Google Scholar 

  • Salmenoja, K., Makela, K., Hupa, M., & Backman, R. (1996). Superheater corrosion in environments containing potassium and chlorine. Journal of the Institute of Energy, 69, 155–162.

    Google Scholar 

  • Saravanan, P., Selvarajan, V., Rao, D. S., Joshi, S. V., & Sundararajan, G. (2000). Influence of process variables on the quality of detonation gun sprayed alumina coatings. Surface and Coatings Technology, 123, 44–54.

    Article  Google Scholar 

  • Seiersten, M., & Kofstad, P. (1987). The effect of SO3 on vanadate-induced hot corrosion. High Temperature Technology, 5(3), 115–122.

    Article  Google Scholar 

  • Seybolt, A. U. (1968). Hot corrosion mechanism. Transactions of the Metallurgical Society of AIME, 242, 1955–1961.

    Google Scholar 

  • Sharma, R. N. (1996). Hot corrosion behaviour of iron- and nickel-base superalloys in salt environments at elevated temperatures (Ph.D. thesis). Met. Mat. Engg. Deptt., University of Roorkee, Roorkee, India.

    Google Scholar 

  • Shaw, L. L., Goberman, D., Ren, R., Gell, M., Jiang, S., Wang, Y., et al. (2000). The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions. Surface and Coatings Technology, 130, 1–8.

    Article  Google Scholar 

  • Shi, L., Zhang, Y., & Shih, S. (1992). The effect of K2SO4 additive in Na2SO4 deposits on low temperature hot corrosion of iron-aluminum alloys. Oxidation of Metals, 38, 385–405.

    Article  Google Scholar 

  • Shih, S., Zhang, Y., & Li, X. (1989). Sub-melting point hot corrosion of alloys and coatings. Materials Science and Engineering A, 120, 277–282.

    Article  Google Scholar 

  • Sidhu, T. S., Prakash, S., & Agrawal, R. D. (2006a). Performance of high velocity oxy fuel—sprayed coating on an Fe-based superalloy in Na2SO4–60 % V2O5 environment at 900 °C part II: Hot corrosion behaviour of coating. Journal of Materials Engineering and Performance, 15, 130–138.

    Article  Google Scholar 

  • Sidhu, T. S., Prakash, S., & Agrawal, R. D. (2006b). Hot corrosion studies of HVOF sprayed Cr3C2–NiCr and Ni–20Cr coatings on nickel-based superalloy at 900 °C. Surface and Coatings Technology, 201(3-4), 792–800.

    Article  Google Scholar 

  • Sidhu, T. S., Prakash, S., & Agrawal, R. D. (2006c). Hot corrosion studies of HVOF NiCrBSi and stellite-6 coatings on a Ni-based superalloy in an actual industrial environment of a coal fired boiler. Surface and Coatings Technology, 201(3/4), 1602–1612.

    Article  Google Scholar 

  • Sidhu, T. S., Prakash, S., & Agrawal, R. D. (2006d). Characterisation of NiCr wire coatings on Ni- and Fe-based superalloys by the HVOF process. Surface and Coatings Technology, 200, 5542–5549.

    Article  Google Scholar 

  • Sidhu, T. S., Prakash, S., & Agrawal, R. D. (2006e). Studies of the metallurgical and mechanical properties of high velocity oxy-fuel sprayed stellite-6 coatings on Ni- and Fe-based superalloys. Surface and Coatings Technology, 201(1/2), 273–281.

    Article  Google Scholar 

  • Sidhu, H. S., Sidhu, B. S., & Prakash, S. (2006f). The role of HVOF coatings in improving hot corrosion resistance of ASTM-SA210 GrA1 steel in the presence of Na2SO4–V2O5 salt deposits. Surface and Coatings Technology, 200, 5386–5394.

    Article  Google Scholar 

  • Sidky, P. S., & Hocking, M. G. (1999). Review of inorganic coatings and coating processes for reducing wear and corrosion. British Corrosion Journal, 34(3), 171–183.

    Article  Google Scholar 

  • Simons, E. L., Browning, G. V., & Liebhatsky, H. A. (1955). Corrosion, 11, 505.

    Article  Google Scholar 

  • Singh, H., Puri, D., & Prakash, S. (2005a). Some studies on hot corrosion performance of plasma sprayed coatings on a Fe-based superalloy. Surface and Coatings Technology, 192(1), 27–38.

    Article  Google Scholar 

  • Singh, H., Puri, D., & Prakash, S. (2005b). Corrosion behaviour of plasma sprayed coating on Ni-based superalloys in Na2SO4–60%V2O5 environment at 900 °C. ISIJ International, 45(6), 886–895.

    Article  Google Scholar 

  • Sobolev, V.V., Guilemany, J.M., & Nutting, J. (2004). HVOF spraying. B0655, Maney, IOM3 (pp. 5).

    Google Scholar 

  • Soltani, R., Coyle, T. W., & Mostaghimi, J. (2003). Wear resistance of nanostructured thermal barrier coatings. In C. Moreau & B. Marple (Eds.), Thermal spray 2003: Advancing the science & applying the technology (pp. 1535–1540). Materials Park, Ohio, USA: ASM International.

    Google Scholar 

  • Stokes, J., & Looney, L. (2001). HVOF system definition to maximise the thickness of formed components. Surface and Coatings Technology, 148, 18–24.

    Article  Google Scholar 

  • Stott, F. H., De Wet, D. J., & Taylor, R. (1994). The degradation resistance of thermal barrier coatings to molten deposits at very high temperatures. Transactions of the Materials Research Society of Japan, 14A, 135–140.

    Google Scholar 

  • Stringer, J. (1977). Hot corrosion of high temperature alloys. Annual Review of Materials Research, 7, 477–509.

    Google Scholar 

  • Stringer, J. (1987). High temperature corrosion of superalloys. Materials Science and Technology, 3(7), 482–493.

    Article  Google Scholar 

  • Stringer, J. (1998). Coatings in the electricity supply industry: past, present, and opportunities for the future. Surface and Coatings Technology, 108–109, 1–9.

    Article  Google Scholar 

  • Stroosnijder, M. F., Mevrel, R., & Bennet, M. J. (1994). The interaction of surface engineering and high temperature corrosion protection. Materials at High Temperatures, 12(1), 53–66.

    Article  Google Scholar 

  • Suito, H., & Gaskell, D. R. (1971). The thermodynamics of melts in the system VO2–V2O5. Metallurgical and Materials Transactions B, 2, 3299–3303.

    Article  Google Scholar 

  • Taylor, M. P., & Evans, H. E. (2001). The influence of bond coat surface roughness and structure on the oxidation of a thermal barrier coating system. Materials Science Forum, 369–372, 711–717.

    Article  Google Scholar 

  • Tiwari, S. N. (1997). Investigations on hot corrosion of some Fe-, Ni- and Co-base superalloy in Na2SO4–V2O5 environment under cyclic conditions (Ph.D. thesis). Met. Mat. Engg. Deptt., University of Roorkee, Roorkee, India.

    Google Scholar 

  • Tiwari, S. N., & Prakash, S. (1996). Hot corrosion behaviour of an iron-base superalloy in salt environment at elevated temperatures. In Proceedings of the Symposium Metals and Materials Research, Indian Institute of Technology Madras (pp. 107–117) Madras, July 4–5.

    Google Scholar 

  • Tiwari, S. N., & Prakash, S. (1997). Studies on the hot corrosion behaviour of some superalloys in Na2SO4–V2O5. In Proceedings of the SOLCEC, Kalpakkam, India, January 22–24, Paper C33.

    Google Scholar 

  • Tiwari, S. N., & Prakash, S. (1998). Literature review-magnesium oxide as inhibitor of hot oil ash corrosion. Materials Science and Technology, 14, 467–472.

    Article  Google Scholar 

  • Tzvetkoff, T., & Gencheva, P. (2003). Mechanism of formation of corrosion layers on nickel and nickel-based alloys in melts containing Ox anions—A review. Materials Chemistry and Physics, 82(3), 897–904.

    Article  Google Scholar 

  • Uusitalo, M. A., Vuoristo, P. M. J., & Mantyla, T. A. (2004). High temperature corrosion of coatings and boiler steels below chlorine-containing salt deposits. Corrosion Science, 46(6), 1311–1331.

    Article  Google Scholar 

  • Valdes, C. J., Dooley, R. B., & Wilson, J. R. (1973). The corrosion of A.I.S.I 446 stainless steel in Molten Vanadates in the temperature range 700–900 °C (Grant No. 7535-14). Report Defense Research Board Canada.

    Google Scholar 

  • Wagner, N., Gnadic, K., Kreye, H., & Kronewetter, H. (1984). Particle velocity in hypersonic flame spraying of WC-Co. Surface and Coatings Technology, 22, 61–71.

    Article  Google Scholar 

  • Wang, Q. M., Wu, Y. N., Ke, P. L., Cao, H. T., Gong, J., Sun, C., et al. (2004). Hot corrosion behavior of AIP NiCoCrAlY(SiB) coatings on nickel base superalloys. Surface and Coatings Technology, 86, 389–397.

    Article  Google Scholar 

  • Yoshiba, M. (1993). Effect of hot corrosion on the mechanical performances of superalloys and coating systems. Corrosion Science, 35(5–8), 1115–1124.

    Article  Google Scholar 

  • Zhang, Y. S., & Rapp, R. A. (1987). Solubilities of CeO2, HfO2 and Y2O3 in fused Na2SO4–30 mol% NaVO3 and CeO2 in pure Na2SO4 at 900 °C. Corrosion, 43(6), 348–352.

    Article  Google Scholar 

  • Zheng, D., Zhu, S., & Wang, F. (2006). Oxidation and hot corrosion behavior of a novel enamel-Al2O3 composite coating on K38G superalloy. Surface and Coatings Technology, 200, 5931–5936.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash Kamal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kamal, S., Sharma, K.V., Srinivasa Rao, P., Mamat, O. (2017). Thermal Spray Coatings for Hot Corrosion Resistance. In: Korada, V., Hisham B Hamid, N. (eds) Engineering Applications of Nanotechnology. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-29761-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29761-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29759-0

  • Online ISBN: 978-3-319-29761-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics