Skip to main content

Effects of Catalyst-Support Materials on the Performance of Fuel Cells

  • Chapter
  • First Online:
Nanomaterials for Fuel Cell Catalysis

Abstract

The operating life of a fuel cell is expected to be thousands of hours. One of the critical components of the fuel cell that will allow for such long-life cycle is the catalyst-support material. The support material is expected, amongst others, to be electrically conductive, strongly interact with the catalyst, possess large surface area, and be corrosion-resistant. This chapter provides the readers with the physico-chemical properties of the traditional support materials (i.e., carbons) and also the emerging support materials being reported in the literature as a means of alleviating some of the challenges associated with carbon supports. The need for the emerging materials arises mainly from the electrochemical corrosion of carbon materials as catalyst-supports in fuel cells (FCs) leading to electrical isolation of the catalyst particles and Ostwald ripening as well as decrease in the electrochemically-active surface area (EASA) of the catalyst. Although the chapter summarizes much of the historically significant work on various catalyst supports for Direct Alcohol Fuel Cells (DAFCs), as far as possible, the most recent developments are accentuated. References are made to other reports that have reviewed similar subject matter for specific cases of supports used in the field for ease of reference by readers. In addition, the basics of fuel cell technology is included which will hopefully serve as an introductory note to scientists and entrepreneurs who are technically new to the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang H, Wang X (2014) Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. J Mater Chem A 2:6249–6670. doi:10.1039/c3ta14754a

    Article  Google Scholar 

  2. Wang H, Dai H (2013) Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem Soc Rev 42:3088–3113. doi:10.1039/c2cs35307e

    Article  CAS  Google Scholar 

  3. Linares N, Silvestre-Albero AM, Serrano E, Silvestre-Albero J, Garcia-Martinez J (2014) Mesoporous materials for clean energy technologies. Chem Soc Rev 43:7681–7717. doi:10.1039/c3cs60435g

    Article  CAS  Google Scholar 

  4. Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887. doi:10.1002/adma.200800627

    Article  CAS  Google Scholar 

  5. Choi NS, Chen Z, Freunberger SA, Ji X, Sun YK, Amine K et al (2012) Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed 51:9994–10024. doi:10.1002/anie.201201429

    Article  CAS  Google Scholar 

  6. Zhang Z, Shimizu T, Senz S, Gösele U (2009) Ordered high-density Si [100] nanowire arrays epitaxially grown by bottom imprint method. Adv Mater 21:2824–2828. doi:10.1002/adma.200802156

    Article  CAS  Google Scholar 

  7. Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev 42:2824–2860. doi:10.1039/c2cs35335k

    Article  CAS  Google Scholar 

  8. Aiyejina A, Sastry MKS (2012) PEMFC flow channel geometry optimization: a review. J Fuel Cell Sci Technol 9:011011. doi:10.1115/1.4005393

    Article  CAS  Google Scholar 

  9. Grujicic M, Chittajallu KM (2004) Optimization of the cathode geometry in polymer electrolyte membrane (PEM) fuel cells. Chem Eng Sci 59:5883–5895. doi:10.1016/j.ces.2004.07.045

    Article  CAS  Google Scholar 

  10. Carcadea E, Stefanescu I, Ionete RE, Ene H, Ingham DB, Ma L (2008) PEM fuel cell geometry optimisation using mathematical modelling. Int J Multiphys 2:313–326. doi:10.1260/175095408786927462

    Article  CAS  Google Scholar 

  11. Grove WR (1839) On a small voltaic battery of great energy; some observations on voltaic combinations and forms of arrangement; and on the inactivity of a copper positive electrode in nitro-sulphuric acid. Philos Mag 15:287–293. doi:10.1080/14786443908649881

    Google Scholar 

  12. Grove WR (1839) On voltaic series and the combination of gases by platinum. Philos Mag 14:127–130. doi:10.1080/14786443908649684

    Google Scholar 

  13. Li L, Hu L, Li J, Wei Z (2015) Enhanced stability of Pt nanoparticle electrocatalysts for fuel cells. Nano Res 8:418–440. doi:10.1007/s12274-014-0695-5

    Article  CAS  Google Scholar 

  14. Sharma S, Pollet BG (2012) Support materials for PEMFC and DMFC electrocatalysts—a review. J Power Sources 208:96–119. doi:10.1016/j.jpowsour.2012.02.011

    Article  CAS  Google Scholar 

  15. Martínez-Huerta M, Tsiouvaras N, García G, Peña M, Pastor E, Rodriguez J et al (2013) Carbon-supported ptrumo electrocatalysts for direct alcohol fuel cells. Catalysts 3:811–838. doi:10.3390/catal3040811

    Article  CAS  Google Scholar 

  16. Li Y, Xu L, Liu H, Li Y (2014) Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem Soc Rev 43:2572–2586. doi:10.1039/c3cs60388a

    Article  CAS  Google Scholar 

  17. Skrabalak SE, Suslick KS (2006) Porous carbon powders prepared by ultrasonic spray pyrolysis. J Am Chem Soc 128:12642–12643. doi:10.1021/ja064899h

    Article  CAS  Google Scholar 

  18. Bianchi CL, Biella S, Gervasini A, Prati L, Rossi M (2003) Gold on carbon: influence of support properties on catalyst activity in liquid-phase oxidation. Catal Lett 85:91–96. doi:10.1023/A:1022176909660

    Article  CAS  Google Scholar 

  19. Auer E, Freund A, Pietsch J, Tacke T (1998) Carbons as supports for industrial precious metal catalysts. Appl Catal A Gen 173:259–271. doi:10.1016/S0926-860X(98)00184-7

    Article  CAS  Google Scholar 

  20. Qiu Z, Huang H, Du J, Tao X, Xia Y, Feng T et al (2014) Biotemplated synthesis of bark-structured TiC nanowires as Pt catalyst supports with enhanced electrocatalytic activity and durability for methanol oxidation. J Mater Chem A 2:8003. doi:10.1039/c4ta00277f

    Article  CAS  Google Scholar 

  21. Wilson MS (1993) Surface area loss of supported platinum in polymer electrolyte fuel cells. J Electrochem Soc 140:2872. doi:10.1149/1.2220925

    Article  CAS  Google Scholar 

  22. Philippot K, Serp P (2012) Concepts in nanocatalysis. In: Nanomaterials in catalysis, 1st edn. Wiley-VCH, Weinheim, pp 1–54

    Google Scholar 

  23. Yuan X, Ding X-L, Wang C-Y, Ma Z-F (2013) Use of polypyrrole in catalysts for low temperature fuel cells. Energy Environ Sci 6:1105–1124. doi:10.1039/C3EE23520C

    Article  CAS  Google Scholar 

  24. Zhang Y, Chen S, Wang Y, Ding W, Wu R, Li L et al (2015) Study of the degradation mechanisms of carbon-supported platinum fuel cells catalyst via different accelerated stress test. J Power Sources 273:62–69. doi:10.1016/j.jpowsour.2014.09.012

    Article  CAS  Google Scholar 

  25. Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N et al (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951

    Article  CAS  Google Scholar 

  26. Kinoshita K (1988) Carbon: electrochemical and physicochemical properties. Wiley, New York, ISBN: 978-0471848028

    Google Scholar 

  27. Sasaki K, Shao M, Adzic R (2009) Dissolution and stabilization of platinum in oxygen cathodes. In: Proton exchange membrane fuel cell durability. Springer, New York, pp 7–28

    Google Scholar 

  28. Huang S, Ganesan P, Park S, Popov BN (2009) Development of a titanium dioxide supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications. J Am Chem Soc 131:13898–13899. doi:10.1021/ja904810h

    Article  CAS  Google Scholar 

  29. Mathias MF, Makharia R, Gasteiger HA, Conley JJ, Fuller TJ, Gittleman CJ et al (2005) Two fuel cell cars in every garage? Electrochem Soc Interface 14:24–35

    CAS  Google Scholar 

  30. Wang H, Thia L, Li N, Ge X, Liu Z, Wang X (2015) Selective electro-oxidation of glycerol over Au supported on extended poly(4-vinylpyridine) functionalized graphene. Appl Catal B Environ 166–167:25–31. doi:10.1016/j.apcatb.2014.11.009

    Google Scholar 

  31. Castanheira L, Dubau L, Mermoux M, Berthomé G, Caqué N, Rossinot E et al (2014) Carbon corrosion in proton-exchange membrane fuel cells: from model experiments to real-life operation in membrane electrode assemblies. ACS Catal 4:2258–2267. doi:10.1021/cs500449q

    Article  CAS  Google Scholar 

  32. Cuong NT, Fujiwara A, Mitani T, Chi DH (2008) Effects of carbon supports on Pt nano-cluster catalyst. Comput Mater Sci 44:163–166. doi:10.1016/j.commatsci.2008.01.061

    Article  CAS  Google Scholar 

  33. Kim S, Park SJ (2006) Effects of chemical treatment of carbon supports on electrochemical behaviors for platinum catalysts of fuel cells. J Power Sources 159:42–45. doi:10.1016/j.jpowsour.2006.04.041

    Article  CAS  Google Scholar 

  34. Siswana MP, Ozoemena KI, Nyokong T (2006) Electrocatalysis of asulam on cobalt phthalocyanine modified multi-walled carbon nanotubes immobilized on a basal plane pyrolytic graphite electrode. Electrochim Acta 52:114–122. doi:10.1016/j.electacta.2006.03.090

    Article  CAS  Google Scholar 

  35. Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ et al (1998) Fullerene pipes. Science 280:1253–1256. doi:10.1126/science.280.5367.1253

    Article  CAS  Google Scholar 

  36. Sun ZP, Zhang XG, Liang YY, Li HL (2009) A facile approach towards sulfonate functionalization of multi-walled carbon nanotubes as Pd catalyst support for ethylene glycol electro-oxidation. J Power Sources 191:366–370. doi:10.1016/j.jpowsour.2009.01.093

    Article  CAS  Google Scholar 

  37. Du CY, Zhao TS, Liang ZX (2008) Sulfonation of carbon-nanotube supported platinum catalysts for polymer electrolyte fuel cells. J Power Sources 176:9–15. doi:10.1016/j.jpowsour.2007.10.016

    Article  CAS  Google Scholar 

  38. Peng F, Zhang L, Wang H, Lv P, Yu H (2005) Sulfonated carbon nanotubes as a strong protonic acid catalyst. Carbon N Y 43:2405–2408. doi:10.1016/j.carbon.2005.04.004

    Article  CAS  Google Scholar 

  39. Ramulifho T, Ozoemena KI, Modibedi RM, Jafta CJ, Mathe MK (2012) Fast microwave-assisted solvothermal synthesis of metal nanoparticles (Pd, Ni, Sn) supported on sulfonated MWCNTs: Pd-based bimetallic catalysts for ethanol oxidation in alkaline medium. Electrochim Acta 59:310–320. doi:10.1016/j.electacta.2011.10.071

    Article  CAS  Google Scholar 

  40. Fashedemi OO, Julies B, Ozoemena KI (2013) Synthesis of Pd-coated FeCo@Fe/C core-shell nanoparticles: microwave-induced “top-down” nanostructuring and decoration. Chem Commun (Camb) 49:2034–2036. doi:10.1039/c3cc38672d

    Article  CAS  Google Scholar 

  41. Fashedemi OO, Ozoemena KI (2013) Enhanced methanol oxidation and oxygen reduction reactions on palladium-decorated FeCo@Fe/C core-shell nanocatalysts in alkaline medium. Phys Chem Chem Phys 15:20982–20991. doi:10.1039/c3cp52601a

    Article  CAS  Google Scholar 

  42. Fashedemi OO, Ozoemena KI (2014) Comparative electrocatalytic oxidation of ethanol, ethylene glycol and glycerol in alkaline medium at Pd-decorated FeCo@Fe/C core-shell nanocatalysts. Electrochim Acta 128:279–286. doi:10.1016/j.electacta.2013.10.194

    Article  CAS  Google Scholar 

  43. Fashedemi OO, Miller HA, Marchionni A, Vizza F, Ozoemena KI (2015) Electro-oxidation of ethylene glycol and glycerol at palladium-decorated FeCo@Fe core–shell nanocatalysts for alkaline direct alcohol fuel cells: functionalized MWCNT supports and impact on product selectivity. J Mater Chem A 3(2015):7145–7156. doi:10.1039/C5TA00076A

    Article  CAS  Google Scholar 

  44. Berber MR, Fujigaya T, Sasaki K, Nakashima N (2013) Remarkably durable high temperature polymer electrolyte fuel cell based on poly(vinylphosphonic acid)-doped polybenzimidazole. Sci Rep 3:1764. doi:10.1038/srep01764

    Article  CAS  Google Scholar 

  45. ChemCatChem (2013) Interfacial engineering of Pt catalysts for fuel cells—MeOH oxidation is dramatically improved by polymer coating on a Pt catalyst. 7:1701–1704. doi:10.1002/cctc.201300157

    Google Scholar 

  46. Fujigaya T, Kim CR, Matsumoto K, Nakashima N (2013) Effective anchoring of Pt-nanoparticles onto sulfonated polyelectrolyte-wrapped carbon nanotubes for use as a fuel cell electrocatalyst. Polym J 45:326–330. doi:10.1038/pj.2012.145

    Article  CAS  Google Scholar 

  47. Fujigaya T, Nakashima N (2013) Fuel cell electrocatalyst using polybenzimidazole-modified carbon nanotubes as support materials. Adv Mater 25:1666–1681. doi:10.1002/adma.201204461

    Article  CAS  Google Scholar 

  48. Hafez IH, Berber MR, Fujigaya T, Nakashima N (2014) Enhancement of platinum mass activity on the surface of polymer-wrapped carbon nanotube-based fuel cell electrocatalysts. Sci Rep 4:6295. doi:10.1038/srep06295

    Article  CAS  Google Scholar 

  49. Matsumoto K, Fujigaya T, Sasaki K, Nakashima N (2011) Bottom-up design of carbon nanotube-based electrocatalysts and their application in high temperature operating polymer electrolyte fuel cells. J Mater Chem 21:1187. doi:10.1039/c0jm02744h

    Article  CAS  Google Scholar 

  50. Fujigaya T, Okamoto M, Nakashima N (2009) Design of an assembly of pyridine-containing polybenzimidazole, carbon nanotubes and Pt nanoparticles for a fuel cell electrocatalyst with a high electrochemically active surface area. Carbon N Y 47:3227–3232. doi:10.1016/j.carbon.2009.07.038

    Article  CAS  Google Scholar 

  51. Dutta K, Kumar P, Das S, Kundu PP (2014) Utilization of conducting polymers in fabricating polymer electrolyte membranes for application in direct methanol fuel cells. Polym Rev 54:1–32. doi:10.1080/15583724.2013.839566

    Article  CAS  Google Scholar 

  52. Dutta K, Das S, Rana D, Kundu PP (2015) Enhancements of catalyst distribution and functioning upon utilization of conducting polymers as supporting matrices in DMFCs: a review. Polym Rev 55:1–56. doi:10.1080/15583724.2014.958771

    Article  CAS  Google Scholar 

  53. Zhou HH, Jiao SQ, Chen JH, Wei WZ, Kuang YF (2004) Effects of conductive polyaniline (PANI) preparation and platinum electrodeposition on electroactivity of methanol oxidation. J Appl Electrochem 34:455–459. doi:10.1023/B:JACH.0000016635.35555.04

    Article  CAS  Google Scholar 

  54. Dutta K, Kundu PP (2014) A review on aromatic conducting polymers-based catalyst supporting matrices for application in microbial fuel cells. Polym Rev 54:401–435. doi:10.1080/15583724.2014.881372

    Article  CAS  Google Scholar 

  55. Rajesh B, Thampi KR, Bonard J-M, Mathieu HJ, Xanthopoulos N, Viswanathan B (2003) Conducting polymeric nanotubules as high performance methanol oxidation catalyst support. Chem Commun (Camb) 21:2022–2023. doi:10.1039/b305591d

  56. Maiyalagan T (2008) Electrochemical synthesis, characterization and electro-oxidation of methanol on platinum nanoparticles supported poly(o-phenylenediamine) nanotubes. J Power Sources 179:443–450. doi:10.1016/j.jpowsour.2008.01.048

    Article  CAS  Google Scholar 

  57. Chen Z, Xu L, Li W, Waje M, Yan Y (2006) Polyaniline nanofibre supported platinum nanoelectrocatalysts for direct methanol fuel cells. Nanotechnology 17:5254–5259. doi:10.1088/0957-4484/17/20/035

    Article  CAS  Google Scholar 

  58. Ma Y, Jiang S, Jian G, Tao H, Yu L, Wang X et al (2009) CNx nanofibers converted from polypyrrole nanowires as platinum support for methanol oxidation. Energy Environ Sci 2:224. doi:10.1039/b807213m

    Article  CAS  Google Scholar 

  59. Antolini E, Gonzalez ER (2009) Polymer supports for low-temperature fuel cell catalysts. Appl Catal A Gen 365:1–19. doi:10.1016/j.apcata.2009.05.045

    Article  CAS  Google Scholar 

  60. Qi Z, Pickup PG (1998) High performance conducting polymer supported oxygen reduction catalysts. Chem Commun 1998:2299–2300. doi:10.1039/a805322g

    Article  Google Scholar 

  61. Tintula KK, Pitchumani S, Sridhar P, Shukla AK (2010) A solid-polymer-electrolyte direct methanol fuel cell (DMFC) with Pt-Ru nanoparticles supported onto poly(3,4-ethylenedioxythiophene) and polystyrene sulphonic acid polymer composite as anode. J Chem Sci 122:381–389. doi:10.1007/s12039-010-0043-6

    Article  CAS  Google Scholar 

  62. Huang SY, Ganesan P, Popov BN (2009) Development of conducting polypyrrole as corrosion-resistant catalyst support for polymer electrolyte membrane fuel cell (PEMFC) application. Appl Catal B Environ 93:75–81. doi:10.1016/j.apcatb.2009.09.014

    Article  CAS  Google Scholar 

  63. Liu FJ, Huang LM, Wen TC, Li CF, Huang SL, Gopalan A (2008) Effect of deposition sequence of platinum and ruthenium particles into nanofibrous network of polyaniline-poly(styrene sulfonic acid) on electrocatalytic oxidation of methanol. Synth Met 158:603–609. doi:10.1016/j.synthmet.2008.04.002

    Article  CAS  Google Scholar 

  64. Kremliakova N (2013) Stable, durable carbon supported catalyst composition for fuel cell. US patent 2013/0164655 A1

    Google Scholar 

  65. Campbell SA, Kremliakova N (2014) Synthesis of stable and durable catalyst composition for fuel cell. US patent 8722284 B2

    Google Scholar 

  66. Hardman S, Chandan A, Steinberger-Wilckens R (2014) Fuel cell added value for early market applications. J Power Sources 287:297–306. http://dx.doi.org/10.1016/j.jpowsour.2015.04.056

    Google Scholar 

  67. Brosha EL, Blackmore KJ, Burrell AK, Henson NJ, Phillips J (2010) Engineered nano-scale ceramic supports for PEM fuel cells. In: 2010 fuel cell seminar and exposition, San Antonio, TX

    Google Scholar 

  68. Merzougui B, Shao M, Protsailo LV (2011) Fuel cell catalyst support with boron carbide-coated metal oxides/phosphates and method of manufacturing same. US patent 20110136047 A1

    Google Scholar 

  69. Zhang L, Wang L, Holt CMB, Zahiri B, Li Z, Malek K et al (2012) Highly corrosion resistant platinum–niobium oxide–carbon nanotube electrodes for the oxygen reduction in PEM fuel cells. Energy Environ Sci 5:6156. doi:10.1039/c2ee02689a

    Article  CAS  Google Scholar 

  70. Morozan A, Jousselme B, Palacin S (2011) Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ Sci 4:1238. doi:10.1039/c0ee00601g

    Article  CAS  Google Scholar 

  71. Tripković V, Abild-Pedersen F, Studt F, Cerri I, Nagami T, Bligaard T et al (2012) Metal oxide-supported platinum overlayers as proton-exchange membrane fuel cell cathodes. ChemCatChem 4:228–235. doi:10.1002/cctc.201100308

    Article  CAS  Google Scholar 

  72. Bonakdarpour A, Tucker RT, Fleischauer MD, Beckers NA, Brett MJ, Wilkinson DP (2012) Nanopillar niobium oxides as support structures for oxygen reduction electrocatalysts. Electrochim Acta 85:492–500. doi:10.1016/j.electacta.2012.08.005

    Article  CAS  Google Scholar 

  73. Huang K, Li Y, Yan L, Xing Y (2014) Nanoscale conductive niobium oxides made through low temperature phase transformation for electrocatalyst support. RSC Adv 4:9701. doi:10.1039/c3ra47091a

    Article  CAS  Google Scholar 

  74. Chris MB, Michael H, Zhang L, Wang L, Holt CMB, Navessin T et al (2010) NRC Publications Archive (NPArC) Archives des publications du CNRC (NPArC) oxygen reduction reaction activity and electrochemical stability of thin-film bilayer systems of platinum on niobium oxide. J Phys Chem C 114:16463–16474

    Article  CAS  Google Scholar 

  75. Xu C, Pietrasz P, Yang J, Soltis R, Sun K, Sulek M, et al (2013) Pt-based ORR catalyst on carbon-supported amorphous niobium oxide support. In: 224th ECS meeting. The Electrochemical Society

    Google Scholar 

  76. Huang S-Y, Ganesan P, Popov BN (2010) Electrocatalytic activity and stability of niobium-doped titanium oxide supported platinum catalyst for polymer electrolyte membrane fuel cells. Appl Catal B Environ 96:224–231. doi:10.1016/j.apcatb.2010.02.025

    Article  CAS  Google Scholar 

  77. Do TB, Cai M, Ruthkosky MS, Moylan TE (2010) Niobium-doped titanium oxide for fuel cell application. Electrochim Acta 55:8013–8017. doi:10.1016/j.electacta.2010.03.027

    Article  CAS  Google Scholar 

  78. Rosenfeld D, Schmid P, Széles S, Lévy F, Demarne V, Grisel A (1996) Electrical transport properties of thin-film metal-oxide-metal Nb2O5 oxygen sensors. Sensors Actuators B Chem 37:83–89. doi:10.1016/S0925-4005(96)01991-0

    Article  CAS  Google Scholar 

  79. Morris D, Dou Y, Rebane J, Mitchell C, Egdell R, Law D et al (2000) Photoemission and STM study of the electronic structure of Nb-doped TiO2. Phys Rev B 61:13445–13457. doi:10.1103/PhysRevB.61.13445

    Article  CAS  Google Scholar 

  80. Iordache C, Blair S, Lycke D, Huff S (2008) Catalysts including metal oxide for organic fuel cells. US 2008/0014494 A1

    Google Scholar 

  81. Suzuki Y, Ishihara A, Mitsushima S, Kamiya N, Ota K-I (2007) Sulfated-zirconia as a support of Pt catalyst for polymer electrolyte fuel cells. Solid-State Lett 10:B105–B107. doi:10.1149/1.2730625

    Article  CAS  Google Scholar 

  82. Subban C, Zhou Q, Leonard B, Ranjan C, Edvenson HM, Disalvo FJ et al (2010) Catalyst supports for polymer electrolyte fuel cells. Philos Trans A Math Phys Eng Sci 368:3243–3253. doi:10.1098/rsta.2010.0116

    Article  CAS  Google Scholar 

  83. Lv H, Mu S (2014) Nano-ceramic support materials for low temperature fuel cell catalysts. Nanoscale 6:5063–5074. doi:10.1039/c4nr00402g

    Article  CAS  Google Scholar 

  84. Ji S, Cho GY, Yu W, Su P-C, Lee MH, Cha SW (2015) Plasma-enhanced atomic layer deposition of nanoscale yttria-stabilized zirconia electrolyte for solid oxide fuel cells with porous substrate. ACS Appl Mater Interfaces 7:2998–3002. doi:10.1021/am508710s

    Article  CAS  Google Scholar 

  85. Kim J-W (1999) Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells. J Electrochem Soc 146:69. doi:10.1149/1.1391566

    Article  CAS  Google Scholar 

  86. Sun C, Xie Z, Xia C, Li H, Chen L (2006) Investigations of mesoporous CeO2-Ru as a reforming catalyst layer for solid oxide fuel cells. Electrochem Commun 8:833–838. doi:10.1016/j.elecom.2006.03.018

    Article  CAS  Google Scholar 

  87. Tada M, Bal R, Mu X, Coquet R, Namba S, Iwasawa Y (2007) Low-temperature PROX (preferential oxidation) on novel CeO(2)-supported Cu-cluster catalysts under fuel-cell operating conditions. Chem Commun (Camb) 2:4689–4691. doi:10.1039/b709176a

    Article  CAS  Google Scholar 

  88. Sun C, Stimming U (2007) Recent anode advances in solid oxide fuel cells. J Power Sources 171:247–260. doi:10.1016/j.jpowsour.2007.06.086

    Article  CAS  Google Scholar 

  89. Xu C, Tian Z, Shen P, Jiang SP (2008) Oxide (CeO2, NiO, Co3O4 and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media. Electrochim Acta 53:2610–2618. doi:10.1016/j.electacta.2007.10.036

    Article  CAS  Google Scholar 

  90. Ye KH, Zhou SA, Zhu XC, Xu CW, Shen PK (2013) Stability analysis of oxide (CeO2, NiO, Co3O4 and Mn3O4) effect on Pd/C for methanol oxidation in alkaline medium. Electrochim Acta 90:108–111. doi:10.1016/j.electacta.2012.12.012

    Article  CAS  Google Scholar 

  91. Scibioh MA, Kim S-K, Cho EA, Lim T-H, Hong S-A, Ha HY (2008) Pt-CeO2/C anode catalyst for direct methanol fuel cells. Appl Catal B Environ 84:773–782. doi:10.1016/j.apcatb.2008.06.017

    Article  CAS  Google Scholar 

  92. Avgouropoulos G, Ioannides T, Papadopoulou C (2002) A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen. Catal Today 75:157–167

    Article  CAS  Google Scholar 

  93. Yu HB, Kim J-H, Lee H-I, Scibioh MA, Lee J, Han J et al (2005) Development of nanophase CeO2-Pt/C cathode catalyst for direct methanol fuel cell. J Power Sources 140:59–65. doi:10.1016/j.jpowsour.2004.08.015

    Article  CAS  Google Scholar 

  94. Guo JW, Zhao TS, Prabhuram J, Chen R, Wong CW (2006) Development of PtRu-CeO2/C anode electrocatalyst for direct methanol fuel cells. J Power Sources 156:345–354. doi:10.1016/j.jpowsour.2005.05.093

    Article  CAS  Google Scholar 

  95. Ou DR, Mori T, Togasaki H, Takahashi M, Ye F, Drennan J (2011) Microstructural and metal-support interactions of the Pt-CeO2/C catalysts for direct methanol fuel cell application. Langmuir 27:3859–3866. doi:10.1021/la1032898

    Article  CAS  Google Scholar 

  96. Liu Y, Fu Q, Stephanopoulos MF (2004) Preferential oxidation of CO in H2 over CuO-CeO2 catalysts. Catal Today 93–95:241–246. doi:10.1016/j.cattod.2004.06.049

    Article  CAS  Google Scholar 

  97. Lei M, Wang ZB, Li JS, Tang HL, Liu WJ, Wang YG (2014) CeO2 nanocubes-graphene oxide as durable and highly active catalyst support for proton exchange membrane fuel cell. Sci Rep 4:7415. doi:10.1038/srep07415

    Article  CAS  Google Scholar 

  98. Ioroi T, Akita T, Yamazaki SI, Siroma Z, Fujiwara N, Yasuda K (2006) Comparative study of carbon-supported Pt/Mo-oxide and PtRu for use as CO-tolerant anode catalysts. Electrochim Acta 52:491–498. doi:10.1016/j.electacta.2006.05.030

    Article  CAS  Google Scholar 

  99. Vellacheri R, Unni SM, Nahire S, Kharul UK, Kurungot S (2010) Pt-MoOx-carbon nanotube redox couple based electrocatalyst as a potential partner with polybenzimidazole membrane for high temperature polymer electrolyte membrane fuel cell applications. Electrochim Acta 55:2878–2887. doi:10.1016/j.electacta.2010.01.012

    Article  CAS  Google Scholar 

  100. Ugalde-Reyes O, Hernandez-Maya R, Ocampo-Flores AL, Ramirez FA, Sosa-Hernandez E, Angeles-Chavez C et al (2014) Study of the electrochemical activities of Mo-modified Pt catalysts, for application as anodes in direct methanol fuel cells: effect of the aggregation route. J Electrochem Soc 162:H132–H141. doi:10.1149/2.0521503jes

    Article  CAS  Google Scholar 

  101. Yan Z, Xie J, Jing J, Zhang M, Wei W, Yin S (2012) MoO2 nanocrystals down to 5 nm as Pt electrocatalyst promoter for stable oxygen reduction reaction. Int J Hydrogen Energy 37:15948–15955. doi:10.1016/j.ijhydene.2012.08.033

    Article  CAS  Google Scholar 

  102. Zhang Z, Liu J, Gu J, Cheng L (2014) An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy Environ Sci 7:2535–2558. doi:10.1039/c3ee43886d

    Article  CAS  Google Scholar 

  103. Ma L, Zhao X, Si F, Liu C, Liao J, Liang L et al (2010) A comparative study of Pt/C and Pt-MoOx/C catalysts with various compositions for methanol electro-oxidation. Electrochim Acta 55:9105–9112. doi:10.1016/j.electacta.2010.08.034

    Article  CAS  Google Scholar 

  104. Antolini E, Gonzalez ER (2009) Ceramic materials as supports for low-temperature fuel cell catalysts. Solid State Ion 180:746–763. doi:10.1016/j.ssi.2009.03.007

    Article  CAS  Google Scholar 

  105. Parrondo J, Han T, Niangar E, Wang C, Dale N, Adjemian K et al (2014) Platinum supported on titanium-ruthenium oxide is a remarkably stable electrocatayst for hydrogen fuel cell vehicles. Proc Natl Acad Sci U S A 111:45–50. doi:10.1073/pnas.1319663111

    Article  CAS  Google Scholar 

  106. Lo CP, Wang G, Kumar A, Ramani V (2013) TiO2-RuO2 electrocatalyst supports exhibit exceptional electrochemical stability. Appl Catal B Environ 140–141:133–140. doi:10.1016/j.apcatb.2013.03.039

    Article  CAS  Google Scholar 

  107. Shinde VM, Madras G (2013) Synthesis of nanosized Ce0.85 M0.1Ru0.05O2-delta (M = Si, Fe) solid solution exhibiting high CO oxidation and water gas shift activity. Appl Catal B Environ 138–139:51–61. doi:10.1016/j.apcatb.2013.02.021

    Article  CAS  Google Scholar 

  108. Kumar A, Ramani VK (2013) RuO2-SiO2 mixed oxides as corrosion-resistant catalyst supports for polymer electrolyte fuel cells. Appl Catal B Environ 138–139:43–50. doi:10.1016/j.apcatb.2013.02.015

    Article  CAS  Google Scholar 

  109. Thanh Ho VT, Pillai KC, Chou H-L, Pan C-J, Rick J, Su W-N, et al (2011) Robust non-carbon Ti0.7Ru0.3O2 support with co-catalytic functionality for Pt: enhances catalytic activity and durability for fuel cells. Energy Environ Sci 4:4194. doi:10.1039/c1ee01522b

    Google Scholar 

  110. Ho VTT, Nguyen NG, Pan CJ, Cheng JH, Rick J, Su WN et al (2012) Advanced nanoelectrocatalyst for methanol oxidation and oxygen reduction reaction, fabricated as one-dimensional pt nanowires on nanostructured robust Ti0.7Ru0.3O2 support. Nano Energy 1:687–695. doi:10.1016/j.nanoen.2012.07.007

    Article  CAS  Google Scholar 

  111. Drew K, Girishkumar G, Vinodgopal K, Kamat P (2005) Boosting fuel cell performance wit a semiconductor photocatalyst: TiO2/Pt-Ru hybrid catalyst for methanol oxidation. J Phys Chem B 109:11851–11857

    Article  CAS  Google Scholar 

  112. Gojković SL, Babić BM, Radmilović VR, Krstajić NV (2010) Nb-doped TiO2 as a support of Pt and Pt-Ru anode catalyst for PEMFCs. J Electroanal Chem 639:161–166. doi:10.1016/j.jelechem.2009.12.004

    Article  CAS  Google Scholar 

  113. Naeem R, Ahmed R, Ansari MS (2014) TiO2 and Al2O3 promoted Pt/C nanocomposites as low temperature fuel cell catalysts for electro oxidation of methanol in acidic media. IOP Conf Ser Mater Sci Eng 60:012031. doi:10.1088/1757-899X/60/1/012031

    Article  CAS  Google Scholar 

  114. Park KW, Han SB, Lee JM (2007) Photo(UV)-enhanced performance of Pt-TiO2 nanostructure electrode for methanol oxidation. Electrochem Commun 9:1578–1581. doi:10.1016/j.elecom.2007.02.020

    Article  CAS  Google Scholar 

  115. Park K-W, Seol K-S (2007) Nb-TiO2 supported Pt cathode catalyst for polymer electrolyte membrane fuel cells. Electrochem Commun 9:2256–2260. doi:10.1016/j.elecom.2007.06.027

    Article  CAS  Google Scholar 

  116. Sun S, Zhang G, Sun X, Cai M, Ruthkosky M (2012) Highly stable and active Pt/Nb-TiO2 carbon-free electrocatalyst for proton exchange membrane fuel cells. J Nanotechnol 2012:13–15. doi:10.1155/2012/389505

    Article  CAS  Google Scholar 

  117. Zhao G, Zhao TS, Yan XH, Zeng L (2015) A high catalyst-utilization electrode for direct methanol fuel cells. Electrochim Acta 164:337–343. doi:10.1016/j.electacta.2015.02.181

    Article  CAS  Google Scholar 

  118. Zhao L, Wang Z-B, Liu J, Zhang J-J, Sui X-L, Zhang L-M et al (2015) Facile one-pot synthesis of Pt/graphene-TiO2 hybrid catalyst with enhanced methanol electrooxidation performance. J Power Sources 279:210–217. doi:10.1016/j.jpowsour.2015.01.023

    Article  CAS  Google Scholar 

  119. Zhang Z, Zhang Y, He L, Yang Y, Liu S, Wang M et al (2015) A feasible synthesis of Mn3(PO4)2@BSA nanoflowers and its application as the support nanomaterial for Pt catalyst. J Power Sources 284:170–177. doi:10.1016/j.jpowsour.2015.03.011

    Article  CAS  Google Scholar 

  120. Deleebeeck L, Ippolito D, Hansen KK (2015) Catalytic enhancement of carbon black and coal-fueled hybrid direct carbon fuel cells. J Electrochem Soc 162:F327–F339. doi:10.1149/2.0761503jes

    Article  CAS  Google Scholar 

  121. Dong X, Takahashi M, Nagao M, Hibino T (2011) Compact bipolar plate-free direct methanol fuel cell stacks. Chem Commun (Camb) 47:5292–5294. doi:10.1039/c1cc10493d

    Article  CAS  Google Scholar 

  122. Dong H-Q, Chen Y-Y, Han M, Li S-L, Zhang J, Li J-S et al (2014) Synergistic effect of mesoporous Mn2O3-supported Pd nanoparticle catalysts for electrocatalytic oxygen reduction reaction with enhanced performance in alkaline medium. J Mater Chem A 2:1272. doi:10.1039/c3ta13585c

    Article  CAS  Google Scholar 

  123. Menezes PW, Indra A, Sahraie NR, Bergmann A, Strasser P, Driess M (2015) Cobalt-manganese-based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions. ChemSusChem 8:164–171. doi:10.1002/cssc.201402699

    Article  CAS  Google Scholar 

  124. Selcuk S, Selloni A (2015) DFT + U study of the surface structure and stability of Co3O4 (110): dependence on U. J Phys Chem C 4:150427132340009. doi:10.1021/acs.jpcc.5b02298

    Google Scholar 

  125. Zou X, Goswami A, Asefa T (2013) Efficient noble metal-free (electro)catalysis of water and alcohol oxidations by zinc-cobalt layered double hydroxide. J Am Chem Soc 135:17242–17245. doi:10.1021/ja407174u

    Article  CAS  Google Scholar 

  126. Yeo BS, Bell AT (2011) Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J Am Chem Soc 133:5587–5593. doi:10.1021/ja200559j

    Article  CAS  Google Scholar 

  127. Frydendal R, Busch M, Halck NB, Paoli EA, Krtil P, Chorkendorff I et al (2015) Enhancing activity for the oxygen evolution reaction: the beneficial interaction of gold with manganese and cobalt oxides. ChemCatChem 7:149–154. doi:10.1002/cctc.201402756

    Article  CAS  Google Scholar 

  128. Walton AS, Fester J, Bajdich M, Arman MA, Osiecki J, Knudsen J et al (2015) Interface controlled oxidation states in layered cobalt oxide nanoislands on gold. ACS Nano 9:2445–2453

    Article  CAS  Google Scholar 

  129. Jiao F, Frei H (2010) Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ Sci 3:1018. doi:10.1039/c002074e

    Article  CAS  Google Scholar 

  130. Wang HF, Kavanagh R, Guo YL, Guo Y, Lu G, Hu P (2012) Origin of extraordinarily high catalytic activity of Co3O4 and its morphological chemistry for CO oxidation at low temperature. J Catal 296:110–119. doi:10.1016/j.jcat.2012.09.005

    Article  CAS  Google Scholar 

  131. Larmier K, Chizallet C, Raybaud P (2015) Tuning the metal-support interaction by structural recognition of cobalt-based catalyst precursors. Angew Chem Int Ed 54(23):6824–6827. doi:10.1002/anie.201502069

    Article  CAS  Google Scholar 

  132. Jiao F, Frei H (2009) Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew Chem Int Ed 48:1841–1844. doi:10.1002/anie.200805534

    Article  CAS  Google Scholar 

  133. Melvin AA, Joshi VS, Poudyal DC, Khushalani D, Haram SK (2015) Electrocatalyst on insulating support?: hollow silica spheres loaded with Pt nanoparticles for methanol oxidation. ACS Appl Mater Interfaces 7:6590–6595. doi:10.1021/am508830h

    Article  CAS  Google Scholar 

  134. Duval Y, Mielczarski JA, Pokrovsky OS, Mielczarski E, Ehrhardt JJ (2002) Evidence of the existence of three types of species at the quartz-aqueous solution interface at pH0-10: XPS surface group quantification and surface complexation modeling. J Phys Chem B 106:2937–2945. doi:10.1021/jp012818s

    Article  CAS  Google Scholar 

  135. Seger B, Kongkanand A, Vinodgopal K, Kamat PV (2008) Platinum dispersed on silica nanoparticle as electrocatalyst for PEM fuel cell. J Electroanal Chem 621:198–204. doi:10.1016/j.jelechem.2007.09.037

    Article  CAS  Google Scholar 

  136. Liu B, Chen JH, Zhong XX, Cui KZ, Zhou HH, Kuang YF (2007) Preparation and electrocatalytic properties of Pt-SiO2 nanocatalysts for ethanol electrooxidation. J Colloid Interface Sci 307:139–144. doi:10.1016/j.jcis.2006.11.027

    Article  CAS  Google Scholar 

  137. Lin C, Hsu S, Ho W (2015) Using SiO2 nanopowders in anode catalyst layer to improve the performance of a proton exchange membrane fuel cell at low humidity. J Mater Sci Chem Eng 3:72–79

    CAS  Google Scholar 

  138. Vu THT, Tran TTT, Le HNT, Tran LT, Nguyen PHT, Nguyen HT et al (2015) Solvothermal synthesis of Pt -SiO2/graphene nanocomposites as efficient electrocatalyst for methanol oxidation. Electrochim Acta 161:335–342. doi:10.1016/j.electacta.2015.02.100

    Article  CAS  Google Scholar 

  139. Uzunoglu A, Dundar F, Ata A (2015) Modification of vulcan XC-72 for enhanced durability of PEMFC catalyst layer. Int JRenew Energy Res 5:111–120

    Google Scholar 

  140. Pinchuk OA, Dundar F, Ata A, Wynne KJ (2012) Improved thermal stability, properties, and electrocatalytic activity of sol-gel silica modified carbon supported Pt catalysts. Int J Hydrogen Energy 37:2111–2120. doi:10.1016/j.ijhydene.2011.10.093

    Article  CAS  Google Scholar 

  141. Pinchuk OA, Dundar F, Ata A, Wynne KJ (2012) Improved thermal stability, properties, and electrocatalytic activity of sol-gel silica modified carbon supported Pt catalysts. Int J Hydrogen Energy 37:2111–2120. doi:10.1016/j.ijhydene.2011.10.093

    Article  CAS  Google Scholar 

  142. Inaba M, Suzuki T, Hatanaka T, Morimoto Y (2015) Fabrication and cell analysis of a Pt/SiO2 platinum thin film electrode. J Electrochem Soc 162:F634–F638. doi:10.1149/2.0201507jes

    Article  CAS  Google Scholar 

  143. Dundar F, Uzunoglu A, Ata A, Wynne KJ (2012) Durability of carbon-silica supported catalysts for proton exchange membrane fuel cells. J Power Sources 202:184–189. doi:10.1016/j.jpowsour.2011.12.010

    Article  CAS  Google Scholar 

  144. Su C, Hsueh Y, Kei C, Lin C, Perng T (2013) Fabrication of high-activity hybrid Pt@ZnO catalyst on carbon cloth by atomic layer deposition for photoassisted electro-oxidation of methanol. J Phys Chem C

    Google Scholar 

  145. Yun M, Ahmed MS, Jeon S (2015) Thiolated graphene oxide-supported palladium cobalt alloyed nanoparticles as high performance electrocatalyst for oxygen reduction reaction. J Power Sources 293:380–387. doi:10.1016/j.jpowsour.2015.05.094

    Article  CAS  Google Scholar 

  146. Ilinich O, Liu Y, Castellano C, Koermer G, Moini A, Farrauto R (2008) A new palladium-based catalyst for methanol steam reforming in a miniature fuel cell power source. Platin Met Rev 52:134–143. doi:10.1595/147106708X324403

    Article  CAS  Google Scholar 

  147. Chen LY, Chang BK, Lu Y, Yang WG, Tatarchuk BJ (2002) Selective catalytic oxidation of CO in H2: fuel cell applications. Abstr Pap Am Chem Soc 224:249–254. doi:10.1016/S0920-5861(00)00426-0

    Google Scholar 

  148. Korotkikh O, Farrauto R (2000) Selective catalytic oxidation of CO in H-2: fuel cell applications. Catal Today 62:249–254

    Article  CAS  Google Scholar 

  149. Lo C-P, Wang G, Kumar A, Ramani V (2011) RuO2/xH2O-TiO2 as catalyst support for PEM fuel cells. ECS Trans 41:1249–1255. doi:10.1149/1.3635656

    Article  CAS  Google Scholar 

  150. Horiguchi D, Tsukatsune T, Noda Z, Hayashi A, Sasaki K (2014) Pt/SnO2 electrocatalysts on conductive fillers. ECS Trans 64:215–220. doi:10.1149/06403.0215ecst

    Article  Google Scholar 

  151. Kinumoto T, Kitayama S, Matsuoka M, Tsumura T, Toyoda M (2014) Correlation between preparation condition and performance of Pt/SnO2/KB for cathode catalyst of PEMFC. ECS Trans 64:199–205

    Article  Google Scholar 

  152. Nagamatsu Y, Kanda K, Noda Z, Hayashi A, Sasaki K (2014) Electrochemical performance of MEAs with Pt/SnO2 mixed with conductive fillers. ECS Trans 64:207–213

    Article  Google Scholar 

  153. Xu C, Shen PK, Ji X, Zeng R, Liu Y (2005) Enhanced activity for ethanol electrooxidation on Pt-MgO/C catalysts. Electrochem Commun 7:1305–1308. doi:10.1016/j.elecom.2005.09.015

    Article  CAS  Google Scholar 

  154. Li N, Zeng Y, Chen S, Xu C, Shen P (2014) Ethanol oxidation on Pd/C enhanced by MgO in alkaline medium. Int J Hydrogen Energy 39:1–5. doi:10.1016/j.ijhydene.2013.12.122

    Article  CAS  Google Scholar 

  155. Mahendiran C, Maiyalagan T, Scott K, Gedanken A (2011) Synthesis of a carbon-coated NiO/MgO core/shell nanocomposite as a Pd electro-catalyst support for ethanol oxidation. Mater Chem Phys 128:341–347. doi:10.1016/j.matchemphys.2011.02.067

    Article  CAS  Google Scholar 

  156. Chu D, Wang J, Wang S, Zha L, He J, Hou Y et al (2009) High activity of Pd-In2O3/CNTs electrocatalyst for electro-oxidation of ethanol. Catal Commun 10:955–958. doi:10.1016/j.catcom.2008.12.041

    Article  CAS  Google Scholar 

  157. Liang R, Hu A, Persic J, Zhou YN (2013) Palladium nanoparticles loaded on carbon modified TiO2 nanobelts for enhanced methanol electrooxidation. Nano Micro Lett 5:202–212. doi:10.5101/nml.v5i3.p202-212

    Article  CAS  Google Scholar 

  158. Liu B, Chen JH, Xiao CH, Cui KZ, Yang L, Pang HL et al (2007) Preparation of Pt/MgO/CNT hybrid catalysts and their electrocatalytic properties for ethanol electrooxidation. Energy Fuels 21:1365–1369. doi:10.1021/ef060452i

    Article  CAS  Google Scholar 

  159. Han X, Zhang T, Du J, Cheng F, Chen J (2013) Porous calcium–manganese oxide microspheres for electrocatalytic oxygen reduction with high activity. Chem Sci 4:368–376. doi:10.1039/c2sc21475j

    Article  CAS  Google Scholar 

  160. Stottlemyer AL, Kelly TG, Meng Q, Chen JG (2012) Reactions of oxygen-containing molecules on transition metal carbides: surface science insight into potential applications in catalysis and electrocatalysis. Surf Sci Rep 67:201–232. doi:10.1016/j.surfrep.2012.07.001

    Article  CAS  Google Scholar 

  161. Chen JG (1996) Carbide and nitride overlayers on early transition metal surfaces: preparation, characterization, and reactivities. Chem Rev 96:1477–1498. doi:10.1021/cr950232u

    Article  CAS  Google Scholar 

  162. Oyama ST (1992) Preparation and catalytic properties of transition metal carbides and nitrides. Catal Today 15:179–200. doi:10.1016/0920-5861(92)80175-M

    Article  CAS  Google Scholar 

  163. Weidman MC, Esposito DV, Hsu Y-C, Chen JG (2012) Comparison of electrochemical stability of transition metal carbides (WC, W2C, Mo2C) over a wide pH range. J Power Sources 202:11–17. doi:10.1016/j.jpowsour.2011.10.093

    Article  CAS  Google Scholar 

  164. Yan Z, He G, Cai M, Meng H, Shen PK (2013) Formation of tungsten carbide nanoparticles on graphitized carbon to facilitate the oxygen reduction reaction. J Power Sources 242:817–823. doi:10.1016/j.jpowsour.2013.05.161

    Article  CAS  Google Scholar 

  165. Wang YJ, Wilkinson DP, Zhang JJ (2011) Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem Rev 111:7625–7651

    Article  CAS  Google Scholar 

  166. Yan Z, Gao L, Zhang M, Xie J, Chen M (2015) Angstrom-scale vanadium carbide rods as Pt electrocatalyst support for efficient methanol oxidation reaction. RSC Adv 5:9561–9564. doi:10.1039/C4RA11798K

    Article  CAS  Google Scholar 

  167. Regmi YN, Waetzig GR, Duffee KD, Schmuecker SM, Thode JM, Leonard BM (2015) Carbides of group IVA, VA and VIA transition metals as alternative HER and ORR catalysts and support materials. J Mater Chem A 3:10085–10091. doi:10.1039/C5TA01296A

    Article  CAS  Google Scholar 

  168. Liu X, Fechler N, Antonietti M (2013) Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chem Soc Rev 42:8237–8265. doi:10.1039/c3cs60159e

    Article  CAS  Google Scholar 

  169. Bennett LH, Cuthill JR, McAlister AJ, Erickson NE, Watson RE (1974) Electronic structure and catalytic behavior of tungsten carbide. Science 181:563–565. doi:10.1126/science.184.4136.563

    Article  Google Scholar 

  170. Levy RB, Boudart M (1973) Platinum-like behavior of tungsten carbide in surface catalysis. Science 181(1973):547–549. doi:10.1126/science.181.4099.547

    Article  CAS  Google Scholar 

  171. Kimmel YC, Esposito DV, Birkmire RW, Chen JG (2012) Effect of surface carbon on the hydrogen evolution reactivity of tungsten carbide (WC) and Pt-modified WC electrocatalysts. Int J Hydrogen Energy 37:3019–3024. doi:10.1016/j.ijhydene.2011.11.079

    Article  CAS  Google Scholar 

  172. Gong XB, You SJ, Wang XH, Gan Y, Zhang RN, Ren NQ (2013) Silver-tungsten carbide nanohybrid for efficient electrocatalysis of oxygen reduction reaction in microbial fuel cell. J Power Sources 225:330–337. doi:10.1016/j.jpowsour.2012.10.047

    Article  CAS  Google Scholar 

  173. Houston JE, Laramore GE, Park RL (1974) Surface electronic properties of tungsten, tungsten carbide, and platinum. Science 185:258–260

    Article  CAS  Google Scholar 

  174. Chen W-F, Muckerman JT, Fujita E (2013) Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem Commun (Camb) 49:8896–8909. doi:10.1039/c3cc44076a

    Article  CAS  Google Scholar 

  175. Ham DJ, Lee JS (2009) Transition metal carbides and nitrides as electrode materials for low temperature fuel cells. Energies 2:873–899. doi:10.3390/en20400873

    Article  CAS  Google Scholar 

  176. Esposito DV, Chen JG (2011) Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: opportunities and limitations. Energy Environ Sci 4:3900. doi:10.1039/c1ee01851e

    Article  CAS  Google Scholar 

  177. Hsu IJ, Kimmel YC, Dai Y, Chen S, Chen JG (2012) Rotating disk electrode measurements of activity and stability of monolayer Pt on tungsten carbide disks for oxygen reduction reaction. J Power Sources 199:46–52. doi:10.1016/j.jpowsour.2011.10.024

    Article  CAS  Google Scholar 

  178. Lu JL, Li ZH, Jiang SP, Shen PK, Li L (2012) Nanostructured tungsten carbide/carbon composites synthesized by a microwave heating method as supports of platinum catalysts for methanol oxidation. J Power Sources 202:56–62. doi:10.1016/j.jpowsour.2011.11.018

    Article  CAS  Google Scholar 

  179. Yan Z, Cai M, Shen PK (2013) Nanosized tungsten carbide synthesized by a novel route at low temperature for high performance electrocatalysis. Sci Rep 3:1646. doi:10.1038/srep01646

    Google Scholar 

  180. Yang M, Cui Z, DiSalvo FJ (2013) Mesoporous chromium nitride as a high performance non-carbon support for the oxygen reduction reaction. Phys Chem Chem Phys 15:7041–7044. doi:10.1039/c3cp51109j

    Article  CAS  Google Scholar 

  181. Cui Z, Burns RG, DiSalvo FJ (2013) Mesoporous Ti0.5Nb0.5N ternary nitride as a novel non carbon support for oxygen reduction reaction in acid and alkaline electrolytes. Chem Mater 25:3782–3784. doi:10.1021/cm4027545

    Article  CAS  Google Scholar 

  182. Yang M, Guarecuco R, Disalvo FJ (2013) Mesoporous chromium nitride as high performance catalyst support for methanol electrooxidation. Chem Mater 25:1783–1787. doi:10.1021/cm400304q

    Article  CAS  Google Scholar 

  183. Yang M, Cui Z, DiSalvo FJ (2013) Mesoporous titanium nitride supported Pt nanoparticles as high performance catalysts for methanol electrooxidation. Phys Chem Chem Phys 15:1088–1092. doi:10.1039/C2CP44215A

    Article  Google Scholar 

  184. Cui Z, Yang M, Di Salvo FJ (2013) Mo2N/C hybrid material as a promising support for the electro-oxidation of methanol and formic acid. Electrochem Commun 33:63–67. doi:10.1016/j.elecom.2013.04.017

    Article  CAS  Google Scholar 

  185. Thotiyl MMO, Sampath S (2011) Electrochemical oxidation of ethanol in acid media on titanium nitride supported fuel cell catalysts. Electrochim Acta 56:3549–3554. doi:10.1016/j.electacta.2010.12.091

    Article  CAS  Google Scholar 

  186. Thotiyl MMO, Kumar TR, Sampath S (2010) Pd supported on titanium nitride for efficient ethanol oxidation. J Phys Chem C 114:17934–17941. doi:10.1021/jp1038514

    Article  CAS  Google Scholar 

  187. Cesiulis H, Ziomek-Moroz M (2000) Electrocrystallization and electrodeposition of silver on titanium nitride. J Appl Electrochem 30:1261–1268. doi:10.1023/A:1026553712521

    Article  CAS  Google Scholar 

  188. Evans SAG, Terry JG, Plank NOV, Walton AJ, Keane LM, Campbell CJ et al (2005) Electrodeposition of platinum metal on TiN thin films. Electrochem Commun 7:125–129. doi:10.1016/j.elecom.2004.11.014

    Article  CAS  Google Scholar 

  189. Musthafa OTM, Sampath S (2008) High performance platinized titanium nitride catalyst for methanol oxidation. Chem Commun (Camb) 7:67–69. doi:10.1039/b715859a

    Article  Google Scholar 

  190. Kakinuma K, Wakasugi Y, Uchida M, Kamino T, Uchida H, Deki S et al (2012) Preparation of titanium nitride-supported platinum catalysts with well controlled morphology and their properties relevant to polymer electrolyte fuel cells. Electrochim Acta 77:279–284. doi:10.1016/j.electacta.2012.06.001

    Article  CAS  Google Scholar 

  191. Avasarala B, Murray T, Li W, Haldar P (2009) Titanium nitride nanoparticles based electrocatalysts for proton exchange membrane fuel cells. J Mater Chem 19:1803. doi:10.1039/b819006b

    Article  CAS  Google Scholar 

  192. Higgins DC, Choi J-Y, Wu J, Lopez A, Chen Z (2012) Titanium nitride–carbon nanotube core–shell composites as effective electrocatalyst supports for low temperature fuel cells. J Mater Chem 22:3727. doi:10.1039/c2jm15014j

    Article  CAS  Google Scholar 

  193. Jia Y, Wang Y, Dong L, Huang J, Zhang Y, Su J et al (2015) A hybrid of titanium nitride and nitrogen-doped amorphous carbon supported on SiC as a noble metal-free electrocatalyst for oxygen reduction reaction. Chem Commun 51:2625–2628. doi:10.1039/C4CC08007F

    Article  CAS  Google Scholar 

  194. Pan Z, Xiao Y, Fu Z, Zhan G, Wu S, Xiao C et al (2014) Hollow and porous titanium nitride nanotubes as high performance catalyst support for oxygen reduction reaction. J Mater Chem A 2:13966–13975. doi:10.1039/c4ta02402h

    Article  CAS  Google Scholar 

  195. Chen J, Takanabe K, Ohnishi R, Lu D, Okada S, Hatasawa H et al (2010) Nano-sized TiN on carbon black as an efficient electrocatalyst for the oxygen reduction reaction prepared using an mpg-C3N4 template. Chem Commun (Camb) 46:7492–7494. doi:10.1039/c0cc02048f

    Article  CAS  Google Scholar 

  196. Alhajri NS, Yoshida H, Anjum DH, Garcia-Esparza AT, Kubota J, Domen K et al (2013) Synthesis of tantalum carbide and nitride nanoparticles using a reactive mesoporous template for electrochemical hydrogen evolution. J Mater Chem A 1:12606. doi:10.1039/c3ta12984e

    Article  CAS  Google Scholar 

  197. Dong Y, Wu Y, Liu M, Li J (2013) Electrocatalysis on shape-controlled titanium nitride nanocrystals for the oxygen reduction reaction. ChemSusChem 6:2016–2021

    Article  CAS  Google Scholar 

  198. Xiao Y, Zhan G, Fu Z, Pan Z, Xiao C, Wu S et al (2015) Titanium cobalt nitride supported platinum catalyst with high activity and stability for oxygen reduction reaction. J Power Sources 284:296–304. doi:10.1016/j.jpowsour.2015.03.001

    Article  CAS  Google Scholar 

  199. Xiao Y, Fu Z, Zhan G, Pan Z, Xiao C, Wu S et al (2015) Increasing Pt methanol oxidation reaction activity and durability with a titanium molybdenum nitride catalyst support. J Power Sources 273:33–40. doi:10.1016/j.jpowsour.2014.09.057

    Article  CAS  Google Scholar 

  200. Xiao Y, Zhan G, Fu Z, Pan Z, Xiao C, Wu S et al (2014) Robust non-carbon titanium nitride nanotubes supported Pt catalyst with enhanced catalytic activity and durability for methanol oxidation reaction. Electrochim Acta 141:279–285. doi:10.1016/j.electacta.2014.07.070

    Article  CAS  Google Scholar 

  201. Mkwizu TS, Mathe MK, Cukrowski I (2010) Electrodeposition of multilayered bimetallic nanoclusters of ruthenium and platinum via surface-limited redox-replacement reactions for electrocatalytic applications. Langmuir 26:570–580. doi:10.1021/la902219t

    Article  CAS  Google Scholar 

  202. Modibedi RM, Louw EK, Mathe MK, Ozoemena KI (2013) The electrochemical atomic layer deposition of Pt and Pd nanoparticles on Ni foam for the electro oxidation of alcohols. ECS Trans 50:9–18

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul M. Ejikeme or Kenneth I. Ozoemena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ejikeme, P.M., Makgopa, K., Ozoemena, K.I. (2016). Effects of Catalyst-Support Materials on the Performance of Fuel Cells. In: Ozoemena, K., Chen, S. (eds) Nanomaterials for Fuel Cell Catalysis. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-29930-3_13

Download citation

Publish with us

Policies and ethics