Skip to main content

Photon Regions Around Black Holes

  • Chapter
  • First Online:
The Shadow of Black Holes

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 875 Accesses

Abstract

The existence of a photon region, a region that contains spherical lightlike geodesics, is crucial for determining the shadow of a black hole. Here, their characterizing inequality is derived. The photon regions are visualized together with ergoregions and regions with causality violation for various values of the parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Large parts of this section are based on [1, 3] while parts of the Sects. 3.1, 3.2 and 3.3 can be found in [1] or [3].

  2. 2.

    There are other definitions of the Carter constant which differ in additive constants.

  3. 3.

    This is also possible for matter if \(\alpha =0\) since \(\varSigma \) has no term depending on both r and \(\vartheta \).

  4. 4.

    As realistic value of \(\varLambda \) one finds \(\varLambda \approx +{10}^{-52} \) m\(^{-2}\) (Unsöld and Baschek 2005) which corresponds to \(\varLambda \approx {10}^{-122}\) measured in Planck units (Barrow and Shaw 2011; Riess et al. 1998; Perlmutter et al. 1999).

References

  • Barrow JD, Shaw DJ (2011) The value of the cosmological constant. Gen Relativ Gravit 43(10):2555–2560. doi:10.1007/s10714-011-1199-1

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Carter B (1968) Hamilton-Jacobi and Schrödinger separable solutions of Einstein’s equations. Commun Math Phys 10(4):280–310. http://projecteuclid.org/euclid.cmp/1103841118

    Google Scholar 

  • Grenzebach A, Perlick V, Lämmerzahl C (2014) Photon regions and shadows of Kerr–Newman–NUT Black Holes with a cosmological constant. Phys Rev D 89:124,004(12). doi:10.1103/PhysRevD.89.124004. arXiv:1403.5234

  • Grenzebach A (2015) Aberrational effects for shadows of black holes. In: Puetzfeld et al Proceedings of the 524th WE-Heraeus-Seminar “Equations of Motion in Relativistic Gravity”, held in Bad Honnef, Germany, 17–23 Feb 2013, pp 823–832. doi:10.1007/978-3-319-18335-0_25, arXiv:1502.02861

    Google Scholar 

  • Grenzebach A, Perlick V, Lämmerzahl C (2015) Photon Regions and shadows of accelerated black holes. Int J Mod Phys D 24(9):1542,024(22). doi:10.1142/S0218271815420249 (Special Issue “Papers” of the “7th Black Holes Workshop”, Aveiro, Portugal, arXiv:1503.03036)

  • Hackmann E (2010) Geodesic equations in black hole space-times with cosmological constant. Dissertation, Universität Bremen, Bremen. http://nbn-resolving.de/urn:nbn:de:gbv:46-diss000118806

  • Hackmann E, Kagramanova V, Kunz J, Lämmerzahl C (2009) Analytic solutions of the geodesic equation in axially symmetric space-times. Europhys Lett 88(3):30,008(5). doi:10.1209/0295-5075/88/30008

    Google Scholar 

  • Hartle JB (2003) Gravity: An Introduction to Einstein’s General Relativity. Pearson Education (Addison-Wesley), San Francisco

    Google Scholar 

  • Kagramanova V, Kunz J, Hackmann E, Lämmerzahl C (2010) Analytic treatment of complete and incomplete geodesics in Taub–NUT space-times. Phys Rev D 81(12):124,044(17). doi:10.1103/PhysRevD.81.124044

  • Perlick V (2004) Gravitational lensing form a spacetime perspective. Living Rev Relativ 7(9). doi:10.12942/lrr-2004-9

  • Perlmutter S, Aldering G, Goldhaber G, Knop RA, Nugent P, Castro PG, Deustua S, Fabbro S, Goobar A, Groom DE, Hook IM, Kim AG, Kim MY, Lee JC, Nunes NJ, Pain R, Pennypacker CR, Quimby R, Lidman C, Ellis RS, Irwin M, McMahon RG, Ruiz-Lapuente P, Walton N, Schaefer B, Boyle BJ, Filippenko AV, Matheson T, Fruchter AS, Panagia N, Newberg HJM, Couch WJ, Project TSC (1999) Measurements of \(\varOmega \) and \(\varLambda \) from 42 High-Redshift Supernovae. Astrophys J 517(2):565. doi:10.1086/307221

    Google Scholar 

  • Riess AG, Filippenko AV, Challis P, Clocchiatti A, Diercks A, Garnavich PM, Gilliland RL, Hogan CJ, Jha S, Kirshner RP, Leibundgut B, Phillips MM, Reiss D, Schmidt BP, Schommer RA, Smith RC, Spyromilio J, Stubbs C, Suntzeff NB, Tonry J (1998) Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron J 116(3):1009. doi:10.1086/300499

    Google Scholar 

  • Teo E (2003) Spherical Photon Orbits around a Kerr Black Hole. Gen Relativ Gravit 35(11):1909–1926. doi:10.1023/A:1026286607562

    Google Scholar 

  • Unsöld A, Baschek B (2005) Der neue Kosmos, 7th edn. Springer, Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Grenzebach .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Grenzebach, A. (2016). Photon Regions Around Black Holes. In: The Shadow of Black Holes. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-30066-5_3

Download citation

Publish with us

Policies and ethics