Skip to main content

Genetic Programming Based Hyper-heuristics for Dynamic Job Shop Scheduling: Cooperative Coevolutionary Approaches

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9594))

Included in the following conference series:

Abstract

Job shop scheduling (JSS) problems are optimisation problems that have been studied extensively due to their computational complexity and application in manufacturing systems. This paper focuses on a dynamic JSS problem to minimise the total weighted tardiness. In dynamic JSS, attributes of a job are only revealed after it arrives at the shop floor. Dispatching rule heuristics are prominent approaches to dynamic JSS problems, and Genetic Programming based Hyper-heuristic (GP-HH) approaches have been proposed to automatically generate effective dispatching rules for dynamic JSS problems. Research on static JSS problems shows that high quality ensembles of dispatching rules can be evolved by a GP-HH that uses cooperative coevolution. Therefore, we compare two coevolutionary GP approaches to evolve ensembles of dispatching rules for dynamic JSS problems. First, we adapt the Multilevel Genetic Programming (MLGP) approach, which has never been applied to JSS problems. Second, we extend an existing approach for a static JSS problem, called Ensemble Genetic Programming for Job Shop Scheduling (EGP-JSS), by adding “less-myopic” terminals that take job and machine attributes outside of the scope of the attributes commonly used in the literature. The results show that MLGP for JSS evolves ensembles that are significantly better than single “less-myopic” rules evolved using GP with only little difference in computation time. In addition, the rules evolved using EGP-JSS perform better than the MLGP-JSS rules, but MLGP-JSS evolves rules significantly faster than EGP-JSS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Branke, J., Nguyen, S., Pickardt, C.W., Zhang, M.: Automated design of production scheduling heuristics: a review. IEEE Trans. Evol. Comput. 20(1), 110–124 (2016). doi:10.1109/TEVC.2015.2429314

    Article  Google Scholar 

  2. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)

    Article  Google Scholar 

  3. Hildebrandt, T., Heger, J., Scholz-Reiter, B.: Towards improved dispatching rules for complex shop floor scenarios: a genetic programming approach. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 257–264 (2010)

    Google Scholar 

  4. Hunt, R., Johnston, M., Zhang, M.: Evolving machine-specific dispatching rules for a two-machine job shop using genetic programming. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 618–625 (2014)

    Google Scholar 

  5. Hunt, R., Johnston, M., Zhang, M.: Evolving “less-myopic” scheduling rules for dynamic job shop scheduling with genetic programming. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, pp. 927–934 (2014)

    Google Scholar 

  6. Jayamohan, M.S., Rajendran, C.: Development and analysis of cost-based dispatching rules for job shop scheduling. Eur. J. Oper. Res. 157(2), 307–321 (2004)

    Article  MATH  Google Scholar 

  7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  8. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: A coevolution genetic programming method to evolve scheduling policies for dynamic multi-objective job shop scheduling problems. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1–8 (2012)

    Google Scholar 

  9. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: A computational study of representations in genetic programming to evolve dispatching rules for the job shop scheduling problem. IEEE Trans. Evol. Comput. 17(5), 621–639 (2013)

    Article  Google Scholar 

  10. Ouelhadj, D., Petrovic, S.: A survey of dynamic scheduling in manufacturing systems. J. Sched. 12(4), 417–431 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Panait, L., Luke, S.: Cooperative multi-agent learning: the state of the art. Auton. Agent. Multi-Agent Syst. 11(3), 387–434 (2005)

    Article  Google Scholar 

  12. Park, J., Nguyen, S., Zhang, M., Johnston, M.: Evolving ensembles of dispatching rules using genetic programming for job shop scheduling. In: Machado, P., et al. (eds.) EuroGP 2015. LNCS, vol. 9025, pp. 92–104. Springer, Heidelberg (2015)

    Google Scholar 

  13. Pickardt, C.W., Hildebrandt, T., Branke, J., Heger, J., Scholz-Reiter, B.: Evolutionary generation of dispatching rule sets for complex dynamic scheduling problems. Int. J. Prod. Econ. 145(1), 67–77 (2013)

    Article  Google Scholar 

  14. Pinedo, M.L.: Scheduling: theory, algorithms, and systems. In: Gaul, W., Bachem, A., Habenicht, W., Runge, W., Stahl, W.W. (eds.) Operations Research Proceedings 1991, 4th edn. Springer, Heidelberg (2012)

    Google Scholar 

  15. Polikar, R.: Ensemble based systems in decision making. IEEE Circ. Syst. Mag. 6(3), 21–45 (2006)

    Article  Google Scholar 

  16. Potter, M.A., De Jong, K.A.: Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol. Comput. 8(1), 1–29 (2000)

    Article  Google Scholar 

  17. Potts, C.N., Strusevich, V.A.: Fifty years of scheduling: a survey of milestones. J. Oper. Res. Soc. 60, S41–S68 (2009)

    Article  MATH  Google Scholar 

  18. Soule, T., Komireddy, P.: Orthogonal evolution of teams: a class of algorithms for evolving teams with inversely correlated errors. In: Riolo, R., Soule, T., Worzel, B. (eds.) Genetic Programming Theory and Practice IV. Genetic and Evolutionary Computation, vol. 5, pp. 79–95. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Vepsalainen, A.P.J., Morton, T.E.: Priority rules for job shops with weighted tardiness costs. Manage. Sci. 33(8), 1035–1047 (1987)

    Article  Google Scholar 

  20. Wu, S.X., Banzhaf, W.: Rethinking multilevel selection in genetic programming. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 1403–1410 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Park, J., Mei, Y., Nguyen, S., Chen, G., Johnston, M., Zhang, M. (2016). Genetic Programming Based Hyper-heuristics for Dynamic Job Shop Scheduling: Cooperative Coevolutionary Approaches. In: Heywood, M., McDermott, J., Castelli, M., Costa, E., Sim, K. (eds) Genetic Programming. EuroGP 2016. Lecture Notes in Computer Science(), vol 9594. Springer, Cham. https://doi.org/10.1007/978-3-319-30668-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30668-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30667-4

  • Online ISBN: 978-3-319-30668-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics