Skip to main content

Comparison of Multi-objective Evolutionary Optimization in Smart Building Scenarios

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9597))

Included in the following conference series:

Abstract

The optimization of operating times and operation modes of devices and systems that consume or generate electricity in buildings by building energy management systems promises to alleviate problems arising in today’s electricity grids. Conflicting objectives may have to be pursued in this context, giving rise to a multi-objective optimization problem. This paper presents the optimization of appliances as well as heating and air-conditioning devices in two distinct settings of smart buildings, a residential and a commercial building, with respect to the minimization of energy costs, CO2 emissions, discomfort, and technical wearout. We propose new encodings for appliances that are based on a combined categorization of devices respecting both, the optimization of operating times as well as operation modes, e.g., of hybrid devices. To identify an evolutionary algorithm that promises to lead to good optimization results of the devices in our real-world lab environments, we compare four state-of-the-art algorithms in realistic simulations: ESPEA, NSGA-II, NSGA-III, and SPEA2. The results show that ESPEA and NSGA-II significantly outperform the other two algorithms in our scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A complete description of this model goes beyond the scope of this paper, but is available on request.

  2. 2.

    http://sourceforge.net/projects/jmetalbymarlonso/.

  3. 3.

    https://www.energy-charts.de/power_de.htm.

  4. 4.

    http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32013R0812.

References

  1. Gottwalt, S., Ketter, W., Block, C., Collins, J., Weinhardt, C.: Demand side management - a simulation of household behavior under variable prices. Energy Policy 39(12), 8163–8174 (2011)

    Article  Google Scholar 

  2. Palensky, P., Dietrich, D.: Demand side management: demand response, intelligent energy systems, and smart loads. IEEE Trans. Industr. Inf. 7(3), 381–388 (2011)

    Article  Google Scholar 

  3. Braun, M.A., Shukla, P.K., Schmeck, H.: Obtaining optimal pareto front approximations using scalarized preference information. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO 2015, pp. 631–638. ACM, New York (2015)

    Google Scholar 

  4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  5. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  6. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm. Technical report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (2001)

    Google Scholar 

  7. Kok, J.K., Warmer, C.J., Kamphuis, I.G.: PowerMatcher: multiagent control in the electricity infrastructure. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2005, pp. 75–82. ACM, New York (2005)

    Google Scholar 

  8. Ha, D.L., Joumaa, H., Ploix, S., Jacomino, M.: An optimal approach for electrical management problem in dwellings. Energy Build. 45, 1–14 (2012)

    Article  Google Scholar 

  9. Nestle, D., Bendel, C., Ringelstein, J.: Bidirectional energy management interface (BEMI)-integration of the low voltage level into grid communication and control. In: 19th International Conference on Electricity Distribution, pp. 21–24, Vienna (2007)

    Google Scholar 

  10. Soares, A., Gomes, Á., Antunes, C.H.: Integrated management of residential energy resources. In: EPJ Web of Conferences, vol. 33 (2012)

    Google Scholar 

  11. Mauser, I., Müller, J., Allerding, F., Schmeck, H.: Adaptive building energy management with multiple commodities and flexible evolutionary optimization. Renewable Energy 87(Part 2), 911–921 (2016)

    Article  Google Scholar 

  12. Ahmadi, P., Rosen, M.A., Dincer, I.: Multi-objective exergy-based optimization of a polygeneration energy system using an evolutionary algorithm. Energy 46(1), 21–31 (2012)

    Article  Google Scholar 

  13. Allerding, F., Premm, M., Shukla, P.K., Schmeck, H.: Electrical load management in smart homes using evolutionary algorithms. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 99–110. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Soares, A., Antunes, C.H., Oliveira, C., Gomes, Á.: A multi-objective genetic approach to domestic load scheduling in an energy management system. Energy 77, 144–152 (2014)

    Article  Google Scholar 

  15. Zhao, Z., Lee, W.C., Shin, Y., Song, K.B.: An optimal power scheduling method for demand response in home energy management system. IEEE Trans. Smart Grid 4(3), 1391–1400 (2013)

    Article  Google Scholar 

  16. Anvari-Moghaddam, A., Seifi, A., Niknam, T., Pahlavani, M.R.A.: Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source. Energy 36(11), 6490–6507 (2011)

    Article  Google Scholar 

  17. Pedrasa, M., Spooner, T., MacGill, I.: Coordinated scheduling of residential distributed energy resources to optimize smart home energy services. IEEE Trans. Smart Grid 1(2), 134–143 (2010)

    Article  Google Scholar 

  18. De Oliveira, G., Jacomino, M., Ploix, S.: Optimal power control for smart homes. In: IFAC World Congréss, Milan, Italy, pp. 9579–9586 (2011)

    Google Scholar 

  19. Salinas, S., Li, M., Li, P.: Multi-objective optimal energy consumption scheduling in smart grids. IEEE Trans. Smart Grid 4(1), 341–348 (2013)

    Article  Google Scholar 

  20. Mauser, I., Dorscheid, M., Allerding, F., Schmeck, H.: Encodings for Evolutionary Algorithms in smart buildings with energy management systems. In: IEEE Congress on Evolutionary Computation (CEC), pp. 2361–2366. IEEE (2014)

    Google Scholar 

  21. Durillo, J.J., Nebro, A.J.: The jMetal framework for multi-objective optimization: design and architecture. Adv. Eng. Softw. 42(10), 760–771 (2011)

    Article  Google Scholar 

  22. Dallinger, D.: The contribution of vehicle-to-grid to balance fluctuating generation: comparing different battery ageing approaches. Technical report, Working Paper Sustainability and Innovation (2013)

    Google Scholar 

  23. Reinhart, C.F., Herkel, S.: The simulation of annual daylight illuminance distributions a state-of-the-art comparison of six RADIANCE-based methods. Energy Build. 32(2), 167–187 (2000)

    Article  Google Scholar 

  24. Graditi, G., Di Silvestre, M., Gallea, R., Sanseverino, E.R.: Heuristic-based shiftable loads optimal management in smart micro-grids. IEEE Trans. Industr. Inf. 11(1), 271–280 (2015)

    Article  Google Scholar 

  25. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  26. Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary computation and convergence to a Pareto front. In: Late Breaking Papers at the Genetic Programming 1998 Conference, pp. 221–228. Citeseer (1998)

    Google Scholar 

  27. Kukkonen, S., Deb, K.: Improved pruning of non-dominated solutions based on crowding distance for bi-objective optimization problems. In: Proceedings of the World Congress on Computational Intelligence, Vancouver, Canada, pp. 1179–1186. IEEE Press (2006)

    Google Scholar 

  28. Shukla, P.K., Braun, M.A., Schmeck, H.: Theory and algorithms for finding knees. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 156–170. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlon Braun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Braun, M., Dengiz, T., Mauser, I., Schmeck, H. (2016). Comparison of Multi-objective Evolutionary Optimization in Smart Building Scenarios. In: Squillero, G., Burelli, P. (eds) Applications of Evolutionary Computation. EvoApplications 2016. Lecture Notes in Computer Science(), vol 9597. Springer, Cham. https://doi.org/10.1007/978-3-319-31204-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31204-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31203-3

  • Online ISBN: 978-3-319-31204-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics