Skip to main content

Growth Regulation of Cardiomyocytes: Control of Cell Size and Its Role in Cardiac Hypertrophy

  • Chapter
  • First Online:
Cardiomyocytes – Active Players in Cardiac Disease
  • 774 Accesses

Abstract

Cardiac hypertrophy in its pure sense describes the ability of cardiomyocytes to increase their cell shape in the absence of cell proliferation. As the large majority of mammalian cardiomyocytes lose the ability to cytokinesis shortly after birth, this is the most important process by which the heart muscle mass can be adapted to increased mechanical stress. Cardiac hypertrophy is a physiological process during adolescence in which the total heart size is increased nearly eightfold from birth to adolescence, but there is only a limited ability of the adult heart to further increase heart size without getting dysfunctional. As cardiac hypertrophy is an established risk factor for heart failure, a lot of attention has been dropped to identify key pathways that trigger cardiac hypertrophy and the transition from physiological hypertrophy to pathophysiological hypertrophy. A large number of hormones, cytokines and neurotransmitters have been identified that trigger cardiac hypertrophy and specifically those related to the sympathetic nervous system, and the renin-angiotensin system is of importance for the transition to heart failure. An increase in the translational capacity is the basis of cardiac growth, but changes in the expression, mainly linked to the sarcomere but also linked to cardiac metabolism, characterise pathophysiological hypertrophy. Although initially not considered as a realistic perspective, it is clear meanwhile that even pathophysiological hypertrophy is a reversible process. The main challenge for the future is to indentify key pathways that normalise heart sizes and normalise the cardiac phenotypes. This chapter reviews our current understanding of key processes leading to cardiac hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anwar A, Taimor G, Korkususz H, Schreckenberg R, Berndt T, Abdallah Y, Piper HM, Schlüter KD (2005) PKC-independent signal transduction pathways increase SERCA expression in adult rat cardiomyocytes. J Mol Cell Cardiol 39:911–919

    Article  CAS  PubMed  Google Scholar 

  • Bisping E, Wakula P, Poteser M, Heinzel FR (2014) Targeting cardiac hypertrophy: toward a causal heart failure therapy. J Cardiovasc Pharmacol 64:293–305

    Article  CAS  PubMed  Google Scholar 

  • Daien CI, Fesler P, du Cailar G, Daien V, Mura T, Dupuy AM, Cristol JP, Ribstein J, Combe B, Morel J (2013) Etanercept normalises left ventricular mass in patients with rheumatoid arthritis. Ann Rheum Dis 72:881–887

    Article  CAS  PubMed  Google Scholar 

  • Galli D, Gobbi G, Carrubbi C, di Marcantonio D, Benedetti L, de Angelis MGC, Meschi T, Vaccarezza M, Sampaolesi M, Mirandola P, Vitale M (2013) The role of PKCε-dependent signaling for cardiac differentiation. Histochem Cell Biol 139:35–46

    Article  CAS  PubMed  Google Scholar 

  • Hasamitsu T, Nakamura TY, Wakabayashi S (2012) Na(+)/H(+) exchanger 1 directly binds to calcineurin A and activates downstream NFAT signaling, leading to cardiomyocyte hypertrophy. Mol Cell Biol 32:3265–3280

    Article  Google Scholar 

  • Heger J, Schlüter KD (2013) Renin and TGFII/M6P receptor system in cardiac biology. Sci World J. doi:10.1155/2013/260298

    Google Scholar 

  • Heymans S, Corsten MF, Verhesen W, Carai P, van Leeuwen REW, Custers K, Peters T, Hazebroek M, Stöger L, Wijnands E, Janssen BJ, Creemers EE, Pinto YM, Grimm D, Schürmann N, Vigorito E, Thum T, Stassen F, Yin X, Mayr M, de Windt LJ, Lutgens E, Wouters K, de Winther MPJ, Zacchinga S, Giacca M, van Bilsen M, Papageorgiou AP, Schroen B (2013) Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation 128:1420–1432

    Article  CAS  PubMed  Google Scholar 

  • Hinrichs S, Heger J, Schreckenberg R, Wenzel S, Euler G, Arens C, Bader M, Rosenkranz S, Caglayan E, Schlüter KD (2011) Controlling cardiomyocytes length: the role of renin and PPARγ. Cardiovasc Res 89:344–352

    Article  CAS  PubMed  Google Scholar 

  • Huntgeburth M, Tiemann K, Shahverdyan R, Schlüter KD, Schreckenberg R, Gross ML, Mödersheim S, Caglayan E, Müller-Ehmsen J, Ghanem A, Vantler M, Zimmermann WH, Böhm M, Rosenkranz S (2011) Transforming growth factor β1 oppositely regulates the hypertrophic and contractile response to β-adrenergic stimulation in the heart. PLoS One 6, e26628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa Y, Homcy CJ (1997) The adenyly cyclase as integrators of transmembrane signal transduction. Circ Res 80:297–304

    Article  CAS  PubMed  Google Scholar 

  • Ivester CT, Kent RL, Tagawa H, Tsutsui H, Imamura T, Cooper G, McDermott PJ (1993) Electrically stimulated contraction accelerates protein synthesis rates in adult feline cardiomyocytes. Am J Physiol 265:H666–H674

    CAS  PubMed  Google Scholar 

  • Kiyonaka S, Kato K, Nishida M, Mio K, Numaga T, Sawaguchi Y, Yoshida T, Wakamori M, Mori E, Numata T, Ishii M, Takemoto H, Ojida A, Watanabe K, Uemura A, Kurose H, Morii T, Kobayashi T, Sato Y, Sato C, Hamachi I, Morio Y (2009) Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc Natl Acad Sci U S A 106:5400–5405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolwicz SC Jr, Tian R (2011) Glucose metabolism and cardiac hypertrophy. Cardiovasc Res 90:194–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komuro I, Kaida T, Shibazaki Y, Kurabayashi M, Katoh Y, Hoh E, Takaku F, Yazaki Y (1990) Stretching cardiac stimulates protooncogene expression. J Biol Chem 265:3595–3598

    CAS  PubMed  Google Scholar 

  • Lai NC, Roth DM, Gao MH, Tang T, Dalton N, Lai YY, Spellman M, Clopton P, Hammond HK (2004) Intracoronary adenovirus encoding adenylyl cyclase VI increases left ventricular function in heart failure. Circulation 110:330–336

    Article  CAS  PubMed  Google Scholar 

  • Mathew J, Sleight P, Lonn E, Johnstone D, Pogue J, Yi Q, Bosch J, Sussex B, Probstfield J, Yusuf S, HOPE Investigators (2001) Reduction in cardiovascular risk by regression of electrocardiographic markers of left ventricular hypertrophy by the angiotensin-converting enzyme inhibitor ramipril. Circulation 104:1615–1621

    Article  CAS  PubMed  Google Scholar 

  • McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR, PARADIGM-HF Investigators and Committees (2014) Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Eng J Med 371:993–1004

    Article  Google Scholar 

  • Mehlsen J, Gleerup G, Haedersdal C, Winther K (1993) Beneficial effects of isradipine on the development of left ventricular hypertrophy in mild hypertension. Am J Hypertens 6:95S–97S

    CAS  PubMed  Google Scholar 

  • Neary JT (1997) MAPK cascades in cell growth and death. News Physiol Sci 12:286–293

    CAS  Google Scholar 

  • Okumura S, Fujita T, Cai W, Jin M, Namekata I, Mototani Y, Jin H, Ohnuki Y, Tsuneoka Y, Kurotani H, Tsunematsu T, Bai Y, Suzuki S, Hidaka Y, Umemura M, Ichikawa Y, Yokoyama U, Sato M, Ishikawa F, Izumi-Nakaseko H, Adachi-Akahane S, Tanaka H, Ishikawa Y (2014) Epac1-dependent phospholamban phosphorylation mediates the cardiac response to stresses. J Clin Invest 124:2785–2801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palazzesi S, Musumeci M, Catalano L, Patrizio M, Stati T, Michienzi S, di Certo MG, Mattei E, Vitelli L, Marano G (2006) Pressure overload causes cardiac hypertrophy in beta1-adrenergic and beta2-adrenergic receptor double knockout mice. J Hypertension 24:563–571

    Article  CAS  Google Scholar 

  • Pinson A, Schlüter K-D, Zhou XJ, Schwartz P, Kessler-Icekson G, Piper HM (1993) Alpha- and Beta-adrenergic stimulation of protein synthesis in cultured adult ventricular cardiomyocyted. J Mol Cell Cardiol 25:477–490

    Google Scholar 

  • Pönicke K, Schlüter KD, Heinroth-Hoffmann I, Seyfarth T, Goldberg M, Osten B, Piper HM, Brodde OE (2001) Noradrenaline-induced increase in protein synthesis in adult rat cardiomyocytes: involvement of only α1A-adrenoceptors. Naunyn-Schmiedeberg’s Arch Pharmacol 364:444–453

    Article  Google Scholar 

  • Rosenkranz S, Flesch M, Amann K, Häuseler C, Kilter H, Seeland U, Schlüter KD, Böhm M (2002) Alterations of β-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-β1. Am J Physiol 283:H1253–H1262

    CAS  Google Scholar 

  • Ruf S, Piper HM, Schlüter KD (2002) Specific role for the extracellular signal-regulated kinase pathway in angiotensin II-but not phenylephrine-induced cardiac hypertrophy in vitro. Pflügers Arch–Eur J Physiol 443:483–490

    Article  CAS  Google Scholar 

  • Saadane N, Alpert S, Chalifour LE (1999) Expression of immediate early genes, GATA-4, and Nkx-2.5 in adrenergic induced cardiac hypertrophy and during regression in adult mice. Br J Pharamcol 127:1165–1176

    Article  CAS  Google Scholar 

  • Sabri A, Steinberg SF (2003) Protein kinase C isoform-selective signals that lead to cardiac hypertrophy and the progression of heart failure. Mol Cell Biochem 251:97–101

    Article  CAS  PubMed  Google Scholar 

  • Sabri A, Pak E, Alcott SA, Wilson BA, Steinberg SF (2000) Coupling function of endogenous alpha(1)- and beta-adrenergic receptors in mouse cardiomyocytes. Circ Res 86:1047–1053

    Article  CAS  PubMed  Google Scholar 

  • Schäfer M, Pönicke K, Heinroth-Hoffmann I, Brodde OE, Piper HM, Schlüter KD (2001) Beta-adrenoceptor stimulation attenuates the hypertrophic effect of alpha-adrenoceptor stimulation in adult rat ventricular cardiomyocytes. J Am Coll Cardiol 37:300–307

    Article  PubMed  Google Scholar 

  • Schäfer M, Schäfer C, Piper HM, Schlüter KD (2002) Hypertrophic responsiveness of cardiomyocytes to α- or β-adrenoceptor stimulation requires sodium-proton-exchanger-1 (NHE-1) activation but not cellular alkalization. Eur J Heart Fail 4:249–254

    Article  PubMed  Google Scholar 

  • Schlüter KD, Piper HM (1992) Trophic effects of catecholamines and parathyroid hormone on adult ventricular cardiomyocytes. Am J Physiol 263:H1739–H1746

    PubMed  Google Scholar 

  • Schlüter KD, Wenzel S (2008) Angiotensin II: a hormone involved in and contributing to pro-hypertrophic cardiac networks and target of anti-hypertrophic cross-talks. Pharmacol Therapeut 119:311–325

    Article  Google Scholar 

  • Schlüter KD, Millar BC, McDermott BJ, Piper HM (1995a) Regulation of protein synthesis and degradation in adult ventricular cardiomyocytes. Am J Physiol 269:C1347–C1355

    PubMed  Google Scholar 

  • Schlüter KD, Zhou XJ, Piper HM (1995b) Induction of hypertrophic responsiveness to isoproterenol by TGF-β in adult rat cardiomyocytes. Am J Physiol 269:C1311–C1316

    PubMed  Google Scholar 

  • Schreckenberg R, Taimor G, Piper HM, Schlüter K-D (2004) Inhibition of Ca2+-dependent PKC isoforms unmasks ERK-dependent hypertrophic growth evoked by phenylephrine in adult ventricular cardiomyocytes. Cardiovasc Res 63:553–560

    Article  CAS  PubMed  Google Scholar 

  • Taimor G, Schlüter KD, Helmig S, Piper HM (2004) Transcription activator protein 1 mediates α- but not β-adrenergic hypertrophic growth responses in adult cardiomyocytes. Am J Physiol 286:H2369–H2375

    CAS  Google Scholar 

  • Tepe NM, Liggett SB (1999) Transgenic replacement of type V adenylyl cyclase identifies a critical mechanism of beta-adrenergic receptor dysfunction in the Gαq overexpressing mouse. FEBS Lett 458:236–240

    Article  CAS  PubMed  Google Scholar 

  • Watts VL, Sepulveda FM, Cingolani OH, Ho AS, Niu X, Kim R, Miller KL, Vandegaer K, Bedja D, Gabrielson KL, Rameau G, O’Rourke B, Kass DA, Barouch LA (2013) Anti-hypertrophic and anti-oxidant effect of beta3-adrenergic stimulation in myocytes requires differential neuronal NOS phosphorylation. J Mol Cell Cardiol 62:8–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenzel S, Abdallah Y, Helmig S, Schäfer C, Piper HM, Schlüter KD (2006) Contribution of PI 3-kinase isoforms to angiotensin II- and α-adrenoceptor signalling pathways in cardiomyocytes. Cardiovasc Res 71:352–362

    Article  CAS  PubMed  Google Scholar 

  • Zhang W (2002) Old and new tools to dissect calcineurin’s role in pressure-overload cardiac hypertrophy. Cardiovasc Res 53:294–303

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-Dieter Schlüter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schlüter, KD. (2016). Growth Regulation of Cardiomyocytes: Control of Cell Size and Its Role in Cardiac Hypertrophy. In: Schlüter, KD. (eds) Cardiomyocytes – Active Players in Cardiac Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-31251-4_6

Download citation

Publish with us

Policies and ethics