Skip to main content

Parallelized Solution of Banded Linear Systems with an Introduction to p-adic Computation

  • Conference paper
  • First Online:
Mathematical Sciences with Multidisciplinary Applications

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 157))

Abstract

We present an approach that supports a parallelized solution of banded linear systems without communication between processors. We do this by adding unknowns to the system equal to the number of superdiagonals q. We then perform r forward substitution processes in parallel (where r is the number of nonzero terms in the right-hand side vector), and superimpose the resulting solution vectors. This leads to the determination of the extra unknowns, and by extension, to the overall solution. However, some systems exhibit exponential growth behavior during the forward substitution process, which prevents the approach from working. We present several modifications to address this, extending the approach (in a modified form) to be used for general systems. We also extend it to block banded systems. Numerical results for well-behaved test systems show a speedup of 20–80 over conventional solvers using only 8 processors. Theoretical estimates assuming q processors demonstrated a speedup of a factor exceeding 300 for 105 unknowns when q = 2000; for 109 unknowns, the speedup exceeds a factor of 104 when q = 45, 000. We also introduce some fundamentals of p-adic computation and modular arithmetic as the basis of the development and implementation of a fully parallel p-adic linear solver, which allows error-free computation over the rational numbers, and is better suited to control coefficient growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Demmel, J.W.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

  2. Golub, G., Van Loan, C.: Matrix Computations, 4th edn. John Hopkins University Press, Baltimore (2013)

    MATH  Google Scholar 

  3. Demmel, J.W., Gilbert, J.R., Li, X.S.: An asynchronous parallel supernodal algorithm for sparse Gaussian elimination. SIAM. J. Matrix Anal. Appl. 20, 915–952 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Donfack, S., Dongarra, J., Faverge, M., Gates, M., Kurzak, J., Luszczek, P., Yamazaki, I.: A survey of recent developments in parallel implementations of Gaussian elimination. Concurr. Comput. Pract. Exp. (2014). doi:10.1002/cpe.3306

    Google Scholar 

  5. Stone, H.S.: An efficient parallel algorithm for the solution of a tridiagonal linear system of equations. J. ACM 20, 27–38 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Van der Vorst, H.A.: Analysis of a parallel solution method for tridiagonal linear systems. Parallel Comput. 5, 303–311 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ruffa, A.A.: A solution approach for lower Hessenberg linear systems. ISRN Appl. Math. 2011, 236727 (2011)

    Google Scholar 

  8. Jandron, M.A., Ruffa, A.A., Baglama, J.: An asynchronous direct solver for banded linear systems (under review)

    Google Scholar 

  9. Luisier, M., Schenk, O., et al.: Fast methods for computing selected elements of the Green’s function in massively parallel nanoelectronic device simulations. In: Wolf, F., Mohr, B., an Mey, D. (eds.) Euro-Par 2013. Lecture Notes in Computer Science, vol. 8097, pp. 533–544. Springer, Berlin/Heidelberg (2013)

    Google Scholar 

  10. Schenk, O., Bollhoefer, M., Roemer, R.: On large-scale diagonalization techniques for the Anderson model of localization. SIAM Rev. 50, 91–112 (2008)

    Article  MathSciNet  Google Scholar 

  11. Schenk, O., Waechter, A., Hagemann, M.: Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization. J. Comput. Optim. Appl. 36, 321–341 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Levinson, N.: The Wiener RMS (root mean square) error criterion in filter design and prediction. In: Wiener, N. (ed.) Extrapolation, Interpolation, and Smoothing of Stationary Time Series with Engineering Applications, Appendix B, pp. 129–148. Wiley, New York (1949)

    Google Scholar 

  13. Trench, W.F.: An algorithm for the inversion of finite Toeplitz matrices. J. Soc. Ind. Appl. Math. 12, 515 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zohar, S.: The solution of a Toeplitz set of linear equations. J. ACM 21, 272 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gavel, D.T.: Solution to the problem of instability in banded Toeplitz solvers. IEEE Trans. Signal Process. 40, 464 (1992)

    Article  Google Scholar 

  16. MacLeod, A.J.: Instability in the solution of banded Toeplitz systems. IEEE Trans. Acoust. Speech Signal Process. 37, 1449 (1989)

    Article  MATH  Google Scholar 

  17. Meek, D.S.: The inverses of Toeplitz band matrices. Linear Algebra Appl. 49, 117 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  19. Gregory, R.T.: Error-Free Computation. Krieger, Huntington (1980)

    Google Scholar 

  20. Gregory, R.T., Krishnamurty, E.V.: Methods and Applications of Error-Free Computation. Springer, Berlin (1984)

    Book  Google Scholar 

  21. Krishnamurty, E.V., Rao, T.M., Subramanian, K.: P-adic arithmetic procedures for exact matrix computations. Proc. Indian Acad. Sci. 82A (5), 165–175 (1975)

    MathSciNet  MATH  Google Scholar 

  22. Krishnamurty, E.V.: Matrix processors using p-adic arithmetic for exact linear computations. IEEE Trans. Comput. 26 (7), 633–639 (1977)

    Article  MathSciNet  Google Scholar 

  23. Limongelli, C.: On an efficient algorithm for big rational number computations by parallel p-adics. J. Symb. Comput. 15 (2) (1993)

    Google Scholar 

  24. Katok, S.: P-adic Analysis Compared with Real. AMS Student Math Library, vol. 37. American Mathematical Society, Providence (2007)

    Google Scholar 

  25. Berkovich, V.: Spectral Theory and Analytic Geometry over Non-achimedean Fields. Mathematical Surveys and Monographs, vol. 33. American Mathematical Society, Providence (1990)

    Google Scholar 

  26. Silverman, J.: The Arithmetic of Dynamical Systems. Springer, New York (2007)

    Book  MATH  Google Scholar 

  27. Dixon, J.D.: Exact solution of linear equations using p-adic expansion. Numer. Math. 40, 137–141 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Villard, G.: Parallel general solution of rational linear systems using p-adic expansions. In: Barton, M., Cosnard, M., Vanneschi, M. (eds.) Proceedings of the IFIP WG 10.3 Working Conference on Parallel Processing. Elsevier, Pisa (1988)

    Google Scholar 

  29. Gouvêa, F.Q.: P-Adic Numbers. An Introduction. Universitext, 2nd edn. Springer, Heidelberg (2003)

    Google Scholar 

  30. Morrison, J.: Parallel p-adic computation. Inf. Process. Lett. 28 (3) (1988)

    Google Scholar 

  31. Young, D.M., Gregory, R.T.: A Survey of Numerical Mathematics. Addison Wesley, Readin (1973)

    MATH  Google Scholar 

  32. Li, X., Lu, C., Sjogren, J.A.: Parallel implementation of exact matrix computation using multiple p-adic arithmetic. Int. J. Netw. Distrib. Comput. 1 (3), 124–133 (2013)

    Article  Google Scholar 

  33. Koc, C.K.: Parallel p-adic method for solving linear systems of equations. Parallel Comput. 23 (13) (1997)

    Google Scholar 

  34. Kornerup, P., Gregory, R.T.: Mapping integers and Hensel codes onto Farey fractions. BIT 23, 9–23 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony A. Ruffa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ruffa, A.A., Jandron, M.A., Toni, B. (2016). Parallelized Solution of Banded Linear Systems with an Introduction to p-adic Computation. In: Toni, B. (eds) Mathematical Sciences with Multidisciplinary Applications. Springer Proceedings in Mathematics & Statistics, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-319-31323-8_19

Download citation

Publish with us

Policies and ethics