Skip to main content

Quantum Transport Simulation of III-V TFETs with Reduced-Order \( \varvec{k} \cdot \varvec{p} \) Method

  • Chapter
  • First Online:
Tunneling Field Effect Transistor Technology

Abstract

III-V tunnel field-effect transistors (TFETs) offer great potentials in future low-power electronics application due to their steep subthreshold slope and large “on” current. Their 3D quantum transport study using non-equilibrium Green’s function method is computationally very intensive, in particular when combined with multiband approaches such as the eight-band \( \varvec{k} \cdot \varvec{p} \) method . To reduce the numerical cost, an efficient reduced-order method is developed in this chapter and applied to study homojunction InAs and heterojunction GaSb–InAs nanowire TFETs. Device performances are obtained for various channel widths, channel lengths, crystal orientations, doping densities, source–pocket lengths, and strain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.M. Ionescu, H. Riel, Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–337 (2011)

    Article  Google Scholar 

  2. A.C. Seabaugh, Q. Zhang, Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 2095–2110 (2010)

    Article  Google Scholar 

  3. V. Nagavarapu, R. Jhaveri, J.C. Woo, The tunnel source (pnpn) n-MOSFET: a novel high performance transistor. IEEE Trans. Electron. Devices 55(4), 1013–1019 (2008)

    Article  Google Scholar 

  4. R. Jhaveri, V. Nagavarapu, J.C. Woo, Effect of pocket doping and annealing schemes on the source-pocket tunnel field-effect transistor. IEEE Trans. Electron. Devices 58(1), 80–86 (2011)

    Article  Google Scholar 

  5. D. Verreck, A. Verhulst, K.-H. Kao, W. Vandenberghe, K. De Meyer, G. Groeseneken, Quantum mechanical performance predictions of p-n-i-n versus pocketed line tunnel field-effect transistors. IEEE Trans. Electron. Devices 60(7), 2128–2134 (2013)

    Article  Google Scholar 

  6. D.K. Mohata, R. Bijesh, S. Mujumdar, C. Eaton, R. Engel-Herbert, T. Mayer, V. Narayanan, J.M. Fastenau, D. Loubychev, A.K. Liu, S. Datta, Demonstration of MOSFET-like on-current performance in arsenide/antimonide tunnel FETs with staggered hetero-junctions for 300 mV logic applications, in IEEE IEDM Technical Digest, Dec 2011, pp. 33.5.1–33.5.4

    Google Scholar 

  7. A.W. Dey, B.M. Borg, B. Ganjipour, M. Ek, K.A. Dick, E. Lind, C. Thelander, L.-E. Wernersson, High-current GaSb/InAs(Sb) nanowire tunnel field-effect transistors. IEEE Electron. Devices Lett. 34(2), 211–213 (2013)

    Article  Google Scholar 

  8. X. Zhao, A. Vardi, J.A. del Alamo, InGaAs/InAs heterojunction vertical nanowire tunnel FETs fabricated by a top-down approach, in IEEE IEDM Technical Digest, Dec 2014, pp. 25.5.1–25.5.4

    Google Scholar 

  9. M. Luisier, G. Klimeck, Performance comparisons of tunneling field-effect transistors made of InSb, Carbon, and GaSb-InAs broken gap heterostructures, in IEEE IEDM Technical Digest, Dec 2009, pp. 1–4

    Google Scholar 

  10. Z. Jiang, Y. He, G. Zhou, T. Kubis, H.G. Xing, G. Klimeck, Atomistic simulation on gate-recessed InAs/GaSb TFETs and performance benchmark, in DRC, June 2013, pp. 145–146

    Google Scholar 

  11. U.E. Avci, I.A. Young, Heterojunction TFET scaling and resonant-TFET for steep subthreshold slope at sub-9 nm gate-length, in IEEE IEDM Technical Digest, Dec 2013, pp. 4.3.1–4.3.4

    Google Scholar 

  12. F. Conzatti, M.G. Pala, D. Esseni, E. Bano, L. Selmi, Strain-induced performance improvements in InAs nanowire tunnel FETs. IEEE Trans. Electron. Devices 59(8), 2085–2092 (2012)

    Article  Google Scholar 

  13. S. Brocard, M.G. Pala, D. Esseni, Design options for hetero-junction tunnel FETs with high on current and steep sub-threshold voltage slope, in IEEE IEDM Technical Digest, Dec 2013, pp. 5.4.1–5.4.4

    Google Scholar 

  14. S. Brocard, M.G. Pala, D. Esseni, Large on-current enhancement in hetero-junction tunnel-FETs via molar fraction grading. IEEE Electron. Devices Lett. 35(2), 184–186 (2014)

    Article  Google Scholar 

  15. A. Sharma, A.A. Goud, K. Roy, GaSb-InAs n-TFET with doped source underlap exhibiting low subthreshold swing at sub-10-nm gate-lengths. IEEE Electron. Devices Lett. 35(12), 1221–1223 (2014)

    Article  Google Scholar 

  16. M.G. Pala, S. Brocard, Exploiting hetero-junctions to improve the performance of III-V nanowire tunnel-FETs. IEEE J. Electron. Devices Soc. 3(3), 115–121 (2015)

    Article  Google Scholar 

  17. S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge, 2005)

    Book  MATH  Google Scholar 

  18. G. Mil’nikov, N. Mori, Y. Kamakura, Equivalent transport models in atomistic quantum wires. Phys. Rev. B 85(3), 035317-1–035317-11 (2012)

    Google Scholar 

  19. A. Afzalian, J. Huang, H. Ilatikhameneh, J. Charles, D. Lemus, J. Bermeo Lopez, S. Perez Rubiano, T. Kubis, M. Povolotskyi, G. Klimeck, M. Passlack, Y.-C. Yeo, Mode space tight binding model for ultra-fast simulations of III-V nanowire MOSFETs and heterojunction TFETs, in Proceedings 18th International Workshop on Computer Electronics, Sept 2015

    Google Scholar 

  20. M. Shin, Full-quantum simulation of hole transport and band-to-band tunneling in nanowires using the k ∙ p method. J. Appl. Phys. 106(5), 054505-1–054505-10 (2009)

    Google Scholar 

  21. J.Z. Huang, W.C. Chew, J. Peng, C.-Y. Yam, L.J. Jiang, G.-H. Chen, Model order reduction for multiband quantum transport simulations and its application to p-type junctionless transistors. IEEE Trans. Electron. Devices 60(7), 2111–2119 (2013)

    Article  Google Scholar 

  22. J.Z. Huang, L. Zhang, W.C. Chew, C.-Y. Yam, L.J. Jiang, G.-H. Chen, M. Chan, Model order reduction for quantum transport simulation of band-to-band tunneling devices. IEEE Trans. Electron. Devices 61(2), 561–568 (2014)

    Article  Google Scholar 

  23. M. Luisier, G. Klimeck, Atomistic full-band design study of InAs band-to-band tunneling field-effect transistors. IEEE Electron. Devices Lett. 30(6), 602–604 (2009)

    Article  Google Scholar 

  24. D. Gershoni, C. Henry, G. Baraff, Calculating the optical properties of multidimensional heterostructures: application to the modeling of quaternary quantum well lasers. IEEE J. Quantum Electron. 29(9), 2433–2450 (1993)

    Article  Google Scholar 

  25. P. Enders, M. Woerner, Exact block diagonalization of the eight-band Hamiltonian matrix for tetrahedral semiconductors and its application to strained quantum wells. Semicond. Sci. Technol. 11(7), 983 (1996)

    Article  Google Scholar 

  26. H.-B. Wu, S.J. Xu, J. Wang, Impact of the cap layer on the electronic structures and optical properties of self-assembled InAs/GaAs quantum dots. Phys. Rev. B 74(20), 205329 (2006)

    Article  MathSciNet  Google Scholar 

  27. B.A. Foreman, Elimination of spurious solutions from eight-band k ∙ p theory. Phys. Rev. B 56(20), R12748 (1997)

    Article  Google Scholar 

  28. T.B. Bahder, Eight-band k ∙ p model of strained zinc-blende crystals. Phys. Rev. B 41(17), 11992 (1990)

    Article  Google Scholar 

  29. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89(11), 5815–5875 (2001)

    Article  Google Scholar 

  30. D. Esseni, P. Palestri, L. Selmi, Nanoscale MOS transistors: semi-classical transport and applications (Cambridge University Press, Cambridge, 2011)

    Book  Google Scholar 

  31. A. Paussa, F. Conzatti, D. Breda, R. Vermiglio, D. Esseni, P. Palestri, Pseudospectral methods for the efficient simulation of quantization effects in nanoscale MOS transistors. IEEE Trans. Electron. Devices 57(12), 3239–3249 (2010)

    Article  Google Scholar 

  32. R.G. Veprek, S. Steiger, B. Witzigmann, Ellipticity and the spurious solution problem of k ∙ p envelope equations. Phys. Rev. B 76(16), 165320-1–165320-9 (2007)

    Google Scholar 

  33. M. Luisier, G. Klimeck, Simulation of nanowire tunneling transistors: From the Wentzel–Kramers–Brillouin approximation to full-band phonon-assisted tunneling. J. Appl. Phys. 107(8), 084507 (2010)

    Article  Google Scholar 

  34. S.O. Koswatta, S.J. Koester, W. Haensch, On the possibility of obtaining MOSFET-like performance and sub-60-mV/dec swing in 1-D broken-gap tunnel transistors. IEEE Trans. Electron Devices 57(12), 3222–3230 (2010)

    Article  Google Scholar 

  35. J. Guo, S. Datta, M. Lundstrom, M. Anantam, Toward multiscale modeling of carbon nanotube transistors. Int. J. Multiscale Comput. Eng. 2(2), 257–276 (2004)

    Article  Google Scholar 

  36. R. Lake, G. Klimeck, R.C. Bowen, D. Jovanovic, Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81(12), 7845–7869 (1997)

    Google Scholar 

  37. H. Lu, A. Seabaugh, Tunnel field-effect transistors: state-of-the-art. IEEE J. Electron. Devices Soc. 2(4), 44–49 (2014)

    Article  Google Scholar 

  38. U.E. Avci, D.H. Morris, I.A. Young, Tunnel field-effect transistors: prospects and challenges. IEEE J. Electron. Devices Soc. 3(3), 88–95 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

The use of nanoHUB.org computational resources operated by the Network for Computational Nanotechnology funded by the US National Science Foundation under Grant Nos. EEC-0228390, EEC-1227110, EEC-0228390, EEC-0634750, OCI-0438246, OCI-0832623, and OCI-0721680 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Z. Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huang, J.Z., Zhang, L., Long, P., Povolotskyi, M., Klimeck, G. (2016). Quantum Transport Simulation of III-V TFETs with Reduced-Order \( \varvec{k} \cdot \varvec{p} \) Method. In: Zhang, L., Chan, M. (eds) Tunneling Field Effect Transistor Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-31653-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31653-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31651-2

  • Online ISBN: 978-3-319-31653-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics