Skip to main content

Noninvasive Methods to Support Metabolomic Studies Targeted at Plant Phenolics for Food and Medicinal Use

  • Chapter
  • First Online:
Plant Omics: Trends and Applications

Abstract

Metabolomics has emerged as an important tool in many disciplines, including research of plant resources for food and pharmaceutical use. Despite the development of modern, high-throughput methods, the analyses are still relatively costly and laborious. In this chapter, we present the noninvasive fluorescence-based methods, typically used in plant phenomics, which may serve as early steps in metabolomic screening targeted at nutritionally and pharmaceutically important phenolic compounds. The presented results of in situ measurements in a high number of plant species indicate a high interspecific variability, which seems to be promising for further studies. The principle of the methods, previous applications as well as future possibilities are dealt with.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ad’hiah AH, Al-Bederi ONH, Al-Sammarrae KW (2013) Cytotoxic effects ofAgrimonia eupatoria L. against cancer cell linesin vitro. J Assoc Arab Univ Basic Appl Sci 14:87–92

    Google Scholar 

  • Agati G, Pinelli P, Cortes Ebner S, Romani A, Cartelat A, Cerovic ZG (2005) Non-destructive evaluation of anthocyanins in olive (Olea europaea) fruits byin situ chlorophyll fluorescence spectroscopy. J Agric Food Chem 53:1354–1363

    Article  CAS  PubMed  Google Scholar 

  • Agati G, Meyer S, Matteini P, Cerovic ZG (2007) Assessment of anthocyanins in grape (Vitis vinifera L.) berries using a noninvasive chlorophyll fluorescence method. J Agric Food Chem 55:1053–1061

    Article  CAS  PubMed  Google Scholar 

  • Agati G, Cerovic ZG, Dalla Marta A, Di Stefano V, Pinelli P, Traversi ML, Orlandini S (2008) Optically assessed preformed flavonoids and susceptibility of grapevine toPlasmopara viticola under different light regimes. Funct Plant Biol 35:77–84

    Article  CAS  Google Scholar 

  • Agati G, Cerovic ZG, Pinelli P, Tattini M (2011) Light-induced accumulation of ortho-dihydroxylated flavonoids as nondestructively monitored by chlorophyll fluorescence excitation techniques. Environ Exp Bot 73:3–9

    Article  CAS  Google Scholar 

  • Anokwuru CP, Anyasor GN, Ajibaye O, Fakoya O, Okebugwu P (2011) Effect of extraction solvents on phenolic, flavonoid and antioxidant activities of three nigerian medicinal plants. Nat Sci 9:53–61

    Google Scholar 

  • Apati P, Szentmihályi K, Balázs A, Baumann D, Hamburger M, Sz. Kristó T, Szőke E, Kéry A (2002) HPLC analysis of the flavonoids in pharmaceutical preparations from Canadian goldenrod (Solidago canadensis). Chromatographia 56:65–68

    Article  Google Scholar 

  • Apáti P, Kéry A, Houghton PJ, Steventon GB, Kite G (2006)In vitro effect of flavonoids fromSolidago canadensis extract on glutathione S-transferase. J Pharm Pharmacol 58:251–256

    Article  PubMed  CAS  Google Scholar 

  • Arts ICW, Hollman PCH (2005) Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr 81:317–325

    Google Scholar 

  • Atanassova M, Georgieva S, Ivancheva K (2011) Total phenolic and total flavonoid contents, antioxidant capacity and biological contaminants in medicinal herbs. J Univ Chem Technol Metall 46:81–88

    CAS  Google Scholar 

  • Baluja J, Diago MP, Goovaerts P, Tardaguila J (2012a) Assessment of the spatial variability of anthocyanins in grapes using a fluorescence sensor: relationships with vine vigour and yield. Precision Agric 13:457–472

    Article  Google Scholar 

  • Baluja J, Diago MP, Goovaerts P, Tardaguila J (2012b) Spatio‐temporal dynamics of grape anthocyanin accumulation in a Tempranillo vineyard monitored by proximal sensing. Aust J Grape Wine Res 18:173–182

    Article  CAS  Google Scholar 

  • Barnes PW, Searles PS, Ballaré CL, Ryel RJ, Caldwell MM (2000) Non‐invasive measurements of leaf epidermal transmittance of UV radiation using chlorophyll fluorescence: field and laboratory studies. Physiol Plant 109:274–283

    Article  CAS  Google Scholar 

  • Barnes PW, Flint SD, Slusser JR, Gao W, Ryel RJ (2008) Diurnal changes in epidermal UV transmittance of plants in naturally high UV environments. Physiol Plant 133:363–372

    Article  CAS  PubMed  Google Scholar 

  • Barthod S, Cerovic Z, Epron D (2007) Can dual chlorophyll fluorescence excitation be used to assess the variation in the content of UV-absorbing phenolic compounds in leaves of temperate tree species along a light gradient? J Exp Bot 58:1753–1760

    Article  CAS  PubMed  Google Scholar 

  • Bélanger MC, Viau AA, Samson G, Chamberland M (2006) Near‐field fluorescence measurements for nutrient deficiencies detection on potatoes (Solanum tuberosum L.): Effects of the angle of view. Int J Remote Sens 27:4181–4198

    Article  Google Scholar 

  • Bélanger MC, Roger JM, Cartolaro P, Viau AA, Bellon‐Maurel V (2008) Detection of powdery mildew in grapevine using remotely sensed UV‐induced fluorescence. Int J Remote Sens 29:1707–1724

    Article  Google Scholar 

  • Belasque L, Gasparoto MCG, Marcassa LG (2008) Detection of mechanical and disease stresses in citrus plants by fluorescence spectroscopy. Appl Optics 47:1922–1926

    Article  Google Scholar 

  • Bengtsson GB, Schöner R, Lombardo E, Schöner J, Borge GIA, Bilger W (2006) Chlorophyll fluorescence for non-destructive measurement of flavonoids in broccoli. Postharvest Biol Tec 39:291–298

    Article  CAS  Google Scholar 

  • Ben Ghozlen N, Moise N, Latouche G, Martinon V, Mercier L, Besançon E, Cerovic ZG (2010) Assessment of grapevine maturity using new portable sensor: Non-destructive quantification of anthocyanins. J Int Sci Vigne Vin 44:1–8

    Google Scholar 

  • Betemps DL, Fachinello JC, Galarça SP, Portela NM, Remorini D, Massai R, Agati G (2012) Non‐destructive evaluation of ripening and quality traits in apples using a multiparametric fluorescence sensor. J Sci Food Agric 92:1855–1864

    Article  CAS  PubMed  Google Scholar 

  • Bidel LPR, Meyer S, Goulas Y, Cadot Y, Cerovic ZG (2007) Responses of epidermal phenolic compounds to light acclimation:in vivo qualitative and quantitative assessment using chlorophyll fluorescence excitation spectra in leaves of three woody species. J Photoch Photobio B 88:163–179

    Article  CAS  Google Scholar 

  • Bilger W, Veit M, Schreiber L, Schreiber U (1997) Measurement of leaf epidermal transmittance of UV radiation by chlorophyll fluorescence. Physiol Plant 101:754–763

    Article  CAS  Google Scholar 

  • Bilger W, Johnsen T, Schreiber U (2001) UV-excited chlorophyll fluorescence as a tool for the assessment of UV protection by the epidermis of plants. J Exp Bot 52:2007–2017

    Article  CAS  PubMed  Google Scholar 

  • Bilger W, Rolland M, Nybakken L (2007) UV screening in higher plants induced by low temperature in the absence of UV-B radiation. Photoch Photobio Sci 6:190–195

    Article  CAS  Google Scholar 

  • Borges G, Degeneve A, Mullen W, Crozier A (2010) Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. J Agric Food Chem 58:3901–3909

    Article  CAS  PubMed  Google Scholar 

  • Braidot E, Zancani M, Petrussa E, Peresson C, Bertolini A, Patui S, Macrì F, Vianello A (2008) Transport and accumulation of flavonoids in grapevine (Vitis vinifera L.). Plant Signal Behav 3:626–632

    Article  PubMed  PubMed Central  Google Scholar 

  • Bramley RGV, Le Moigne M, Evain S, Ouzman J, Florin L, Fadaili EM, Hinze CJ, Cerovic ZG (2011) On-the-go sensing of grape berry anthocyanins during commercial harvest: development and prospects. Aust J Grape Wine Res 17:316–326

    Article  CAS  Google Scholar 

  • Brestic M, Zivcak M (2013) PSII fluorescence techniques for measurement of drought and high temperature stress signal in plants: protocols and applications. In: Das AB, Rout GR (eds) Molecular stress physiology of plants. Springer, Dordrecht, pp 87–131

    Chapter  Google Scholar 

  • Brestic M, Zivcak M, Olsovska K, Repkova J (2008) Functional study of PS II and PS I energy use and dissipation mechanisms in barley wild type and chlorina mutants under high light conditions. In: Allen JA, Gantt E, Golbeck JH, Osmond B (eds) Photosynthesis. Energy from the sun. Springer, Dordrecht, pp 1407–1411

    Chapter  Google Scholar 

  • Brestic M, Zivcak M, Kalaji HM, Allakhverdiev SI, Carpentier R (2012) Photosystem II thermo-stability in situ: environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. Plant Physiol Biochem 57:93–105

    Article  CAS  PubMed  Google Scholar 

  • Brestic M, Zivcak M, Olsovska K, Shao HB, Kalaji HM, Allakhverdiev SI (2014) Reduced glutamine synthetase activity plays a role in control of photosynthetic responses to high light in barley leaves. Plant Physiol Biochem 81:74–83

    Article  CAS  PubMed  Google Scholar 

  • Brestic M, Zivcak M, Kunderlikova K, Sytar O, Shao HB, Kalaji HM, Allakhverdiev SI (2015) Low PSI content limits the photoprotection of PSI and PSII in early growth stages of chlorophyll b deficient wheat mutant lines. Photosynth Res 125(12):151–166

    Article  CAS  PubMed  Google Scholar 

  • Burchard P, Bilger W, Weissenböck G (2000) Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV‐A and UV‐B radiation in developing rye primary leaves as assessed by ultraviolet‐induced chlorophyll fluorescence measurements. Plant Cell Environ 23:1373–1380

    Article  CAS  Google Scholar 

  • Bürling K, Cerovic ZG, Cornic G, Ducruet JM, Noga G, Hunsche M (2013) Fluorescence-based sensing of drought-induced stress in the vegetative phase of four contrasting wheat genotypes. Environ Exp Bot 89:51–59

    Article  Google Scholar 

  • Bursal E, Köksal E, Gülçin I, Bilsel G, Gören AC (2013) Antioxidant activity and polyphenol content of cherry stem (Cerasus avium L.) determined by LC–MS/MS. Food Res Int 51:67–74

    Article  CAS  Google Scholar 

  • Butz P, Hofmann C, Tauscher B (2005) Recent developments in noninvasive techniques for fresh fruit and vegetable internal quality analysis. J Food Sci 70:131–141

    Article  Google Scholar 

  • Cai YZ, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74:2157–2184

    Article  CAS  PubMed  Google Scholar 

  • Cartelat A, Cerovic ZG, Goulas Y, Meyer S, Lelarge C, Prioul JL, Barbottin A, Jeuffroy MH, Gate P, Agati G, Moya I (2005) Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crop Res 91:35–49

    Article  Google Scholar 

  • Cerovic ZG, Moise N, Agati G, Latouche G, Ghozlen NB, Meyer S (2007) New portable optical sensors for the assessment of winegrape phenolic maturity based on berry fluorescence. In: Stafford JV (ed) Precision Agriculture ‘07 Wageningen Academic Publishers, Wageningen, poster 035, pp 1–6

    Google Scholar 

  • Cerovic ZG, Ounis A, Cartelat A, Latouche G, Goulas Y, Meyer S, Moya I (2002) The use of chlorophyll fluorescence excitation spectra for the nondestructivein situ assessment of UV-absorbing compounds in leaves. Plant Cell Environ 25:1663–1676

    Article  CAS  Google Scholar 

  • Cerovic ZG, Cartelat A, Goulas Y, Meyer S (2005) In-field assessment of wheat-leaf polyphenolics using the new optical leaf-clip Dualex. Precision Agric 5:243–249

    Google Scholar 

  • Cerovic ZG, Moise N, Agati G, Latouche G, Ben Ghozlen N, Meyer S (2008) New portable optical sensors for the assessment of winegrape phenolic maturity based on berry fluorescence. J Food Comp Anal 21:650–654

    Article  CAS  Google Scholar 

  • Cerovic ZG, Masdoumierd G, Ghozlen NB, Latouche G (2012) A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol Plant 146:251–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9

    Article  CAS  Google Scholar 

  • Chan PK (2003) Inhibition of tumor growthin vitro by the extract ofFagopyrum cymosum (fago-c). Life Sci 72:1851–1858

    Article  CAS  PubMed  Google Scholar 

  • Clifford MN (2000) Chlorogenic acids and other cinnamates. Nature, occurrence, dietary burden, absorption and metabolism. J Sci Food Agric 80:1033–1043

    Article  CAS  Google Scholar 

  • Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biological Reviews 74:311–345

    Article  CAS  PubMed  Google Scholar 

  • Cuadra P, Harborne JB (1996) Changes in epicuticular flavonoids and photosynthetic pigments as a plant response to UV-B radiation. Z Naturforsch C 51:671–680

    CAS  Google Scholar 

  • Datko M, Zivcak M, Brestic M (2008) Proteomic analysis of barley (Hordeum vulgare L.) leaves as affected by high temperature treatment. In: Allen JF, Gantt E, Goldbeck JH, Os-mond B (eds) Photosynthesis Energy from the sun. 14th International congress on photosynthesis. Springer, Dordrecht, pp 1523–1527

    Google Scholar 

  • Day TA, Howells BW, Rice WJ (1994) Ultraviolet absorption and epidermal-transmittance spectra in foliage. Physiol Plant 92:207–218

    Article  CAS  Google Scholar 

  • Demkura PV, Abdala G, Baldwin IT, Ballaré CL (2010) Jasmonate-dependent and-independent pathways mediate specific effects of solar ultraviolet B radiation on leaf phenolics and antiherbivore defense. Plant Physiol 152:1084–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demotes-Mainard S, Boumaza R, Meyer S, Cerovic ZG (2008) Indicators of nitrogen status for ornamental woody plants based on optical measurements of leaf epidermal polyphenol and chlorophyll contents. Sci Hortic 115:377–385

    Article  CAS  Google Scholar 

  • Djeridane A, Yousfi M, Nadjemi B, Boutassouna D, Stocker P, Vidal N (2006) Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem 97:654–660

    Article  CAS  Google Scholar 

  • El-Mousallamy AM, Hussein SA, Irmgard M, Nawwar MA (2000) Unusual phenolic glycosides fromCotoneaster orbicularis. Phytochemistry 53:699–704

    Article  CAS  PubMed  Google Scholar 

  • Fan L, Fang C, Dubé C, Tremblay N, Khanizadeh S (2011) A non-destructive method to predict polyphenol content in strawberry. J Food Agric Environ 9:59–62

    Google Scholar 

  • Fernie AR (2003) Review: metabolome characterisation in plant system analysis. Funct Plant Biol 30:111–120

    Article  CAS  Google Scholar 

  • Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161

    Article  CAS  PubMed  Google Scholar 

  • Fu L, Xu BT, Xu XR, Gan RY, Zhang Y, Xia EQ, Li HB (2011) Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem 129:345–350

    Article  CAS  Google Scholar 

  • Galambošová J, Macák M, Živčák M, Rataj V, Slamka P, Olšovská K (2014) Comparison of spectral reflectance and multispectrally induced fluorescence to determine winter wheat nitrogen deficit. Adv Mater Res 1059:127–133

    Article  Google Scholar 

  • Gan RY, Kuang L, Xu XR, Zhang YA, Xia EQ, Song FL, Li HB (2010) Screening of natural antioxidants from traditional Chinese medicinal plants associated with treatment of rheumatic disease. Molecules 15:5988–5997

    Article  CAS  PubMed  Google Scholar 

  • Garcia LL, Cosme LL, Peralta HR, Garcia BM (1973) Phytochemical investigation ofColeus blumei Benth. Philipp J Sci 102:1–12

    CAS  Google Scholar 

  • Ghasemi PA, Rahnama GH, Malekpoor F, Roohi BH (2011) Variation in antibacterial activity and phenolic content ofHypericum scabrum L. populations. J Med Plant Res 5:4119–4125

    Google Scholar 

  • Ghozlen NB, Cerovic ZG, Germain C, Toutain S, Latouche G (2010) Nondestructive optical monitoring of grape maturation by proximal sensing. Sensors 10:10040–10068

    Article  PubMed  PubMed Central  Google Scholar 

  • Gitelson AA, Merzlyak MN, Chivkunova OB (2001) Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochem Photobiol 74:38–45

    Article  CAS  PubMed  Google Scholar 

  • González-Gallego J, Sánchez-Campos S, Tuñón MJ (2007) Anti-inflammatory properties of dietary flavonoids. Nutr Hosp 22:287–293

    PubMed  Google Scholar 

  • Gorham J (1995) The biochemistry of the stilbenoids. Chapman & Hall, London

    Google Scholar 

  • Goulas Y, Cerovic ZG, Cartelat A, Moya I (2004) Dualex: a new instrument for field measurements of epidermal ultraviolet absorbance by chlorophyll fluorescence. Applied Optics 43:4488–4496

    Article  CAS  PubMed  Google Scholar 

  • Grandmaison J, Ibrahim RK (1996) Evidence for nuclear binding of flavonol sulphate esters inFlaveria chloraefolia. J Plant Physiol 147:653–660

    Article  CAS  Google Scholar 

  • Hagen SF, Borge GIA, Solhaug KA, Bengtsson GB (2009) Effect of cold storage and harvest date on bioactive compounds in curly kale (Brassica oleracea L. var. acephala). Postharvest Biology and Technology 51(1):36–42

    Article  CAS  Google Scholar 

  • Hagen SF, Solhaug KA, Bengtsson GB, Borge GIA, Bilger W (2006) Chlorophyll fluorescence as a tool for nondestructive estimation of anthocyanins and total flavonoids in apples. Postharvest Biol Technol 41:156–163

    Article  CAS  Google Scholar 

  • Häkkinen S, Heinonen M, Kärenlampi S, Mykkänen H, Ruuskanen J, Törrönen R (1999) Screening of selected flavonoids and phenolic acids in 19 berries. Food Res Int 32:345–353

    Article  Google Scholar 

  • Hall RD (2006) Plant metabolomics: from holistic hope, to hype, to hot topic. New Phytol 169:453–468

    Article  CAS  PubMed  Google Scholar 

  • Hall RD (2011) Plant metabolomics in a nutshell: potential and future challenges. Ann Plant Rev Biol Plant Metab 43:1–24

    CAS  Google Scholar 

  • Han Q, Shinohara K, Kakubari Y, Mukai Y (2003) Photoprotective role of rhodoxanthin during cold acclimation in Cryptomeria japonica. Plant, Cell and Environment 2:715–723

    Article  Google Scholar 

  • Haq M, Sani W, Hossain ABMS, Taha RM, Monneruzzaman KM (2011) Total phenolic contents, antioxidant and antimicrobial activities ofBruguiera gymnorrhiza. J Med Plant Res 5:4112–4118

    CAS  Google Scholar 

  • Harborne JB (1976) Function of flavonoids in plants. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments. Academic, London

    Google Scholar 

  • Harborne JB (1989) General procedures and measurement of total phenolics. In: Dey PM, Harborne JB (eds) Plant phenolics. Academic, London

    Google Scholar 

  • Hazir MHM, Shariff ARM, Amiruddin MD (2012a) Determination of oil palm fresh fruit bunch ripeness—based on flavonoids and anthocyanin content. Ind Crop Prod 36:466–475

    Article  CAS  Google Scholar 

  • Hazir MHM, Shariff ARM, Amiruddin MD, Ramli AR, Iqbal Saripan M (2012b) Oil palm bunch ripeness classification using fluorescence technique. J Food Eng 113:534–540

    Article  Google Scholar 

  • Hong YP, Lin SQ, Jiang YM, Ashraf M (2008) Variation in contents of total phenolics and flavonoids and antioxidant activities in the leaves of 11Eriobotrya species. Plant Food Hum Nutr 63:200–204

    Article  CAS  Google Scholar 

  • Ibrahim RK (1992) Immunolocalization of flavonoid conjugates and their enzymes. In: Stafford HA, Ibrahim RK (eds) Phenolic metabolism in plants. Plenum, New York, NY

    Google Scholar 

  • Ishii S, Katsumura T, Shiozuka C, Ooyauchi K, Kawasaki K, Takigawa S, Fukushima T, Tokuji Y, Kinoshita M, Ohnishi M, Kawahara M, Ohba K (2008) Anti-inflammatory effect of buckwheat sprouts in lipopolysaccharide-activated human colon cancer cells and mice. Biosci Biotech Biochem 72:3148–3157

    Article  CAS  Google Scholar 

  • Jonadet M, Meunier MT, Villie F, Bastide JP, Lamaison JL (1986) Flavonoids extracted from Ribes nigrum L. and Alchemilla vulgaris L.: 1. in vitro inhibitory activities on elastase, trypsin and chymotrypsin. 2. Angioprotective activities compared in vivo. J Pharmacol 17:21–27

    CAS  PubMed  Google Scholar 

  • Jung HA, Park JC, Chung HY, Kim J, Choi JS (1999) Antioxidant flavonoids and chlorogenic acid from the leaves ofEriobotrya japonica. Arch Pharm Res 22:213–218

    Article  CAS  PubMed  Google Scholar 

  • Jurd L (1957) The detection of aromatic acids in plant extracts by ultraviolet absorption spectra of their ions. Arch Biochem Biophys 66:284–288

    Article  CAS  PubMed  Google Scholar 

  • Kagan J (1968) The flavonoid pigments ofLiatris spicata. Phytochemistry 7:1205–1207

    Article  CAS  Google Scholar 

  • Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI, Brestic M, Bussotti F, Calatayud A, Dabrowski P, Elsheery NI, Lorenzo L, Guidi L, Hogewoning SW, Jajoo A, Misra AN, Nebauer SG, Pancaldi S, Penella C, Poli DB, Pollastrini M, Romanowska-Duda ZB, Rutkowska B, Serôdio J, Suresh K, Szulc W, Tambussi E, Yanniccari M, Zivcak M (2014) Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res 122:121–158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamal J (2011) Quantification of alkaloids, phenols and flavonoids in sunflower (Helianthus annuus L.). Afr J Biotechnol 10:3149–3315

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The KEGG databases at GenomeNet. Nucleic Acids Res 30:42–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karen R, Polomski B (1999) Coleus. HGIC 1162: Extension. South Carolina: Clemson University; Clemson University, June 1999. Web. 03 May 2013

    Google Scholar 

  • Kaushik R, Pradeep N, Vamshi V, Geetha M, Usha A (2010) Nutrient composition of cultivated stevia leaves and the influence of polyphenols and plant pigments on sensory and antioxidant properties of leaf extracts. J Food Sci Technol 47:27–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawa JM, Taylor CG, Przybylski R (2003) Buckwheat concentrate reduces serum glucose in streptozotocin-diabetic rats. J Agric Food Chem 51:7287–7291

    Article  CAS  PubMed  Google Scholar 

  • Kayashita J, Shimaoka I, Nakajoh M, Yamazaki M, Norihisa K (1997) Consumption of buckwheat protein lowers plasma cholesterol and raises fecal neutral sterols in cholesterol-fed rats because of its low digestibility. J Nutr 127:1395–1400

    CAS  PubMed  Google Scholar 

  • Keski-Saari S, Julkunen-Tiitto R (2003) Early developmental responses of mountain birch (Betula rubescens subsp. Czerepanovii) seedlings to different concentrations of phosphorus. Tree Physiol 23:1201–1208

    Article  CAS  PubMed  Google Scholar 

  • Khattak MMAK, Taher M (2011) Bioactivity-guided isolation of antimicrobial agent fromColeus amboinicus Lour (Torbangun). Technical report. Submitted IIUM RMC. IIUM, Kuala Lumpur,http://irep.iium.edu.my/3985/

    Google Scholar 

  • Kim HK, Choi YH, Verpoorte R (2011) NMR-based plant metabolomics: where do we stand, where do we go? Trends Biotechnol 29:267–275

    Article  CAS  PubMed  Google Scholar 

  • Kolb CA, Käser MA, Kopecký J, Zotz G, Riederer M, Pfündel EE (2001) Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves. Plant Physiol 127:863–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolb CA, Kopecký J, Riederer M, Pfündel EE (2003) UV screening by phenolics in berries of grapevine (Vitis vinifera). Funct Plant Biol 30:1177–1186

    Article  CAS  Google Scholar 

  • Kolb CA, Schreiber U, Gademann R, Pfundel EE (2005) UV-A screening in plants determined using a new portable fluorimeter. Photosynthetica 43:371–377

    Article  Google Scholar 

  • Koostra A (1994) Protection from UV-B-induced DNA damage by flavonoids. Plant Mol Biol 26:771–774

    Article  Google Scholar 

  • Kubínová R, Jankovská D, Bauerová V (2012) Antioxidant and α-glucosidase inhibition activities and polyphenol content of five species ofAgrimonia genus. Acta Fytotech zootech 15:38–41

    Google Scholar 

  • Kuckenberg J, Tartachnyk I, Noga G (2008) Evaluation of fluorescence and remission techniques for monitoring changes in peel chlorophyll and internal fruit characteristics in sunlit and shaded sides of apple fruit during shelf-life. Postharvest Biol Technol 48:231–241

    Article  CAS  Google Scholar 

  • Lai A, Santangelo E, Soressi GP, Fantoni R (2007) Analysis of the main secondary metabolites produced in tomato (Lycopersicon esculentum, Mill.) epicarp tissue during fruit ripening using fluorescence techniques. Postharvest Biol Technol 43:335–342

    Article  CAS  Google Scholar 

  • Laitinen ML, Julkunen-Tiitto R, Rousi M (2002) Foliar phenolic composition of European white birch during bud and leaf development. Physiol Plant 114:450–460

    Article  CAS  PubMed  Google Scholar 

  • Latouche G, Bellow S, Poutaraud A, Meyer S, Cerovic ZG (2013) Influence of constitutive phenolic compounds on the response of grapevine (Vitis vinifera L.) leaves to infection byPlasmopara viticola. Planta 237:351–361

    Article  CAS  PubMed  Google Scholar 

  • Le Moigne M, Florin L, Rigaud S, Cerovic ZG (2010) Anthocyanin assessment at grape reception in a winery using a fluorescence optical remote sensor. In: Macrowine 2010: third international symposium on macromolecules and secondary metabolites of grapevine and wine, p 85

    Google Scholar 

  • Lee TT, Huang CC, Shieh XH, Chen CL, Chen LJ, Yu B (2010) Flavonoid, phenol and polysaccharide contents ofEchinacea purpurea L. and its immunostimulant capacityin vitro. IJESD 1:5–9

    Article  CAS  Google Scholar 

  • Lei Z, Huhman DV, Sumner LW (2011) Mass spectrometry strategies in metabolomics. J Biol Chem 286:25435–25442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenk S, Buschmann C (2006) Distribution of UV-shielding of the epidermis of sun and shade leaves of the beech (Fagus sylvatica L.) as monitored by multi-colour fluorescence imaging. J Plant Physiol 163:1273–1283

    Article  CAS  PubMed  Google Scholar 

  • Lenk S, Buschmann C, Pfündel EE (2007)In vivo assessing flavonols in white grape berries (Vitis vinifera L. cv. Pinot Blanc) of different degrees of ripeness using chlorophyll fluorescence imaging. Funct Plant Biol 34:1092–1104

    Article  CAS  Google Scholar 

  • Leporatti ML, Ivancheva S (2003) Preliminary comparative analysis of medicinal plants used in the traditional medicine of Bulgaria and Italy. J Ethnopharmacol 87:123–142

    Article  PubMed  Google Scholar 

  • Lins EC, Belasque Junior J, Marcassa LG (2009) Detection of citrus canker in citrus plants using laser induced fluorescence spectroscopy. Precision Agric 10:319–330

    Article  Google Scholar 

  • Louati S, Simmonds MSJ, Grayer RJ, Kite GC, Damak M (2003) Flavonoids fromEriobotrya japonica (Rosaceae) growing in Tunisia. Biochem Syst Ecol 31:99–101

    Article  CAS  Google Scholar 

  • Louis J, Cerovic ZG, Moya I (2006) Quantitative study of fluorescence excitation and emission spectra of bean leaves. J Photoch Photobio B 85:65–71

    Article  CAS  Google Scholar 

  • Louis J, Meyer S, Maunoury-Danger F, Fresneau C, Meudec E, Cerovic ZG (2009) Seasonal changes in optically assessed epidermal phenolic compounds and chlorophyll contents in leaves of sessile oak (Quercus petraea): towards signatures of phenological stage. Funct Plant Biol 36:732–741

    Article  CAS  Google Scholar 

  • Luqman S, Rizvi SI (2006) Protection of lipid peroxidation and carbonyl formation in proteins by capsaicin in human erythrocytes subjected to oxidative stress. Phytother Res 20:303–306

    Article  CAS  PubMed  Google Scholar 

  • Ma MS, Bae IY, Lee HG, Yang CB (2006) Purification and identification of angiotensin I-converting enzyme inhibitory peptide from buckwheat (Fagopyrum esculentum Moench.). Food Chem 96:36–42

    Article  CAS  Google Scholar 

  • Ma F, Cheng L (2004) Exposure of the shaded side of apple fruit to full sun leads to up-regulation of both the xanthophyll cycle and the ascorbate–glutathione cycle. Plant Science 166: 1479–1486

    Article  CAS  Google Scholar 

  • Mabry TJ, Markham KR, Thomas MB (1970) The systematic identification of flavonoids. Springer, Heidelberg

    Book  Google Scholar 

  • Maha MS, Zeinab AKTI (2012) Cytotoxic compounds from the leaves ofGaillardia aristata Pursh. growing in Egypt. Nat Prod Res: formerly. Nat Prod Lett 26(22):2057–2062. doi:10.1080/14786419.2011.606219

    Google Scholar 

  • Maoz I, Bahar A, Kaplunov T, Zutchi Y, Daus A, Lurie S, Lichter A (2014) The effect of the cytokinin forchlorfenuron on the tannin content of Thompson Seedless table grapes. Am J Enol Viticult 65(2):230–237

    Article  CAS  Google Scholar 

  • Matese A, Capraro F, Primicerio J, Gualato G, Di Gennaro SF, Agati G (2013) Mapping of vine vigor by UAV and anthocyanin content by a non-destructive fluorescence technique. In: Precision agriculture’13. Wageningen Academic Publishers, Wageningen, pp 201–208

    Google Scholar 

  • Mendes Novo J, Iriel A, Lagorio MG (2012) Modelling chlorophyll fluorescence of kiwi fruit (Actinidia deliciosa). Photochem Photobiol Sci 11:724–730

    Article  CAS  Google Scholar 

  • Mercure S-A, Daoust B, Samson G (2004) Causal relationship between growth inhibition, accumulation of phenolic metabolites, and changes of UV-induced fluorescences in nitrogen-deficient barley plants. Can J Bot 82:815–821

    Article  CAS  Google Scholar 

  • Merzlyak MN, Melø TB, Naqvi KR (2008) Effect of anthocyanins, carotenoids, and flavonols on chlorophyll fluorescence excitation spectra in apple fruit: signature analysis, assessment, modelling, and relevance to photoprotection. J Exp Bot 59:349–359

    Article  CAS  PubMed  Google Scholar 

  • Merzlyak M, Solovchenko A, Pogosyan S (2005) Optical properties of rhodoxanthin accumulated in Aloe arborescens Mill. leaves under high-light stress with special reference to its photoprotective function. Photochemical and Photobiological Sciences 4:333–400

    Article  CAS  PubMed  Google Scholar 

  • Merzlyak MN, Solovchenko AE (2002) Photostability of pigments in ripening apple fruit: a possible photoprotective role of carotenoids during plant senescence. Plant Science 163:881–888

    Article  CAS  Google Scholar 

  • Meyer S, Louis J, Moise N, Piolot T, Baudin X, Cerovic ZG (2009) Developmental changes in spatial distribution ofin vivo fluorescence and epidermal UV absorbance overQuercus petraea leaves. Ann Bot 104:621–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales LO, Tegelberg R, Brosché M, Lindfors A, Siipola S, Aphalo PJ (2011) Temporal variation in epidermal flavonoids due to altered solar UV radiation is moderated by the leaf position inBetula pendula. Physiol Plant 143:261–270

    Article  CAS  PubMed  Google Scholar 

  • Moskowitz AH, Hradzina G (1981) Vacuolar contents of fruit subepidermal cells fromVitis sp. Plant Physiol 68:686–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moyer RA, Hummer KE, Finn CE, Frei B, Wrolstad RE (2002) Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits:Vaccinium,Rubus, andRibes. J Agric Food Chem 50:519–525

    Article  CAS  PubMed  Google Scholar 

  • Muller V, Lankes C, Schmitz-Eiberger M, Noga G, Hunsche M (2013) Estimation of flavonoid and centelloside accumulation in leaves ofCentella asiatica L. Urban by multiparametric fluorescence measurements. Environ Exp Bot 93:27–34

    Article  CAS  Google Scholar 

  • Nicholson JK, Lindon JC (2008) Systems biology: metabonomics. Nature 455:1054–1056

    Article  CAS  PubMed  Google Scholar 

  • Nowak R, Gawlik-Dziki U (2007) Polyphenols ofRosa L. leaves extracts and their radical scavenging activity. Z Naturforsch C 62:32–38

    Article  CAS  PubMed  Google Scholar 

  • Ounis A, Cerovic ZG, Briantais JM, Moya I (2001a) Dual-excitation FLIDAR for the estimation of epidermal UV absorption in leaves and canopies. Remote Sens Environ 76:33–48

    Article  Google Scholar 

  • Ounis A, Cerovic ZG, Briantais JM, Moya I (2001b) DE-FLIDAR: a new remote sensing instrument for estimation of epidermal UV absorption in leaves and canopies. In: Proceedings of European association of remote sensing laboratories (EARSeL)-SIG-workshop LIDAR (EARSeL, 2000), vol 1, pp 196–204

    Google Scholar 

  • Ozimina II (1979) Flavonoids ofSpartium junceum. 1. Flavones and flavonols. Chem Nat Comp 16:763–764

    Article  Google Scholar 

  • Palme E, Bilia AR, Morelli I (1996) Flavonols and isoflavones fromCotoneaster simonsii. Phytochemistry 42:903–905

    Article  CAS  Google Scholar 

  • Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2:270–278

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey KB, Mishra N, Rizvi SI (2009) Protective role of myricetin on markers of oxidative stress in human erythrocytes subjected to oxidative stress. Nat Prod Commun 4:221–226

    CAS  PubMed  Google Scholar 

  • Patel DK (2012) Study on medicinal plants with special reference to family Asteraceae, Fabaceae and Solanaceae in G.G.V.-Campus, Bilaspur (C. G.) in central India. Curr Bot 3:34–38

    Google Scholar 

  • Pfündel EE, Agati G, Cerovic ZG (2006) Optical properties of plant surfaces. In: Riederer M, Muller C (eds) Biology of the plant cuticle. Annual Plant Reviews, Vol. 23. Blackwell Publishing, Oxford, pp 216–249

    Google Scholar 

  • Pfündel EE (2003) Action of UV and visible radiation on chlorophyll fluorescence from dark-adapted grape leaves (Vitis vinifera L.). Photosynth Res 75:29–39

    Article  PubMed  Google Scholar 

  • Pfündel EE, Ghozlen NB, Meyer S, Cerovic ZG (2007) Investigating UV screening in leaves by two different types of portable UV fluorimeters revealsin vivo screening by anthocyanins and carotenoids. Photosynth Res 93:205–221

    Article  PubMed  CAS  Google Scholar 

  • Pinelli P, Romani A, Fierini E, Remorini D, Agati G (2013) Characterisation of the polyphenol content in the kiwifruit (Actinidia deliciosa) exocarp for the calibration of a fruit-sorting optical sensor. Phytochem Anal 24:460–466

    Article  CAS  PubMed  Google Scholar 

  • Pokorný J (2000) Natural antioxidants. In: Zeuthen P, Bøgh-Sørensen L (eds) Food preservation techniques. Woodhead Publishing, Cambridge

    Google Scholar 

  • Pokorný J (2007) Are natural antioxidants better- and safer-than synthetic antioxidants? Eur J Lipid Sci Technol 109:629–642

    Article  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105

    Article  CAS  PubMed  Google Scholar 

  • Raal A, Kirsipuu K (2011) Total flavonoid content in varieties ofCalendula officinalis L. originating from different countries and cultivated in Estonia. Nat Prod Res 25:658–662

    Article  CAS  PubMed  Google Scholar 

  • Reinold S, Hahlbrock K (1997)In situ localization of phenylpropanoid biosynthetic mRNAs and proteins in parsley (Petroselinum crispum). Bot Acta 110:431–443

    Article  CAS  Google Scholar 

  • Repkova J, Brestic M, Zivcak M (2008) Bioindication of barley leaves vulnerability in conditions of water deficit. Cereal Res Commun 36:1747–1750

    CAS  Google Scholar 

  • Robards K, Antolovich M (1997) Analytical biochemistry of fruit flavonoids, a review. Analyst 122:11–34

    Article  Google Scholar 

  • Roessner U, Willmitzer L, Fernie A (2002) Metabolic profiling and biochemical phenotyping of plant systems. Plant Cell Rep 21:189–196

    Article  CAS  Google Scholar 

  • Rop O, Mlcek J, Jurikova T, Neugebauerova J, Vabkova J (2012) Edible flowers – a new promising source of mineral elements in human nutrition. Molecules 17:6672–6683

    Article  CAS  PubMed  Google Scholar 

  • Saure MC (1990) External control of anthocyanin formation in apple. Sci Hortic 42:181–218

    Article  CAS  Google Scholar 

  • Scalbert A, Manach C, Morand C, Remesy C (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci 45:287–306

    Article  CAS  Google Scholar 

  • Schmutz A, Buchala A, Jenny T, Ryser U (1994) The phenols in the wax and in the suberin of green cotton fibres and their function. Acta Hortic 381:269–275

    Article  CAS  Google Scholar 

  • Schnabl H, Weissenböck G, Scharf H (1986)In vivo microspectro photometric characterisation of flavonol glycosides inVicia faba guard and epidermal cells. J Exp Bot 37:61–72

    Article  CAS  Google Scholar 

  • Schnabl H, Weissenböck G, Sachs G, Scharf H (1989) Cellular distribution of UV-absorbing compounds in guard and subsidiary cells ofZea mays L. J Plant Physiol 135:249–252

    Article  CAS  Google Scholar 

  • Schnitzler JP, Jungblut TP, Heller W, Hutzler P, Heinzmann U, Schmelzer E, Ernst D, Langebartels C, Sandermann H (1996) Tissue localization of UV-B screening pigments and chalcone synthase mRNA in Scots pine (Pinus sylvestris L.) needles. New Phythol 132:247–258

    Article  CAS  Google Scholar 

  • Scogings P, Siko S, Taylor R (2014) Calibration of a hand-held instrument for measuring condensed tannin concentration based on UV-and red-excited fluorescence. Afr J Range For Sci 31:55–58

    Article  Google Scholar 

  • Senejoux F, Demougeot C, Karimov U, Muyard F, Kerramb P, Aisa HA, Girard-Thernier C (2013) Chemical constituents fromEchinops integrifolius. Biochem Syst Ecol 47:42–44

    Article  CAS  Google Scholar 

  • Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, Hossain Z (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environ Exp Bot 102:37–47

    Article  CAS  Google Scholar 

  • Shaza AM, Nadia MS, Omyma El-G, Zeinab YA, Iman MA (2012) Phytoconstituents Investigation, Anti-diabetic and Anti-dyslipidemic Activities ofCotoneaster horizontalis Decne Cultivated in Egypt. Life Science Journal 9(2s):394–403

    Google Scholar 

  • Sheahan JJ (1996) Sinapate esters provide greater UV-B attenuation than flavonoids inArabidopsis thaliana (Brassicaceae). Am J Bot 83:679–686

    Article  CAS  Google Scholar 

  • Shimazaki K-I, Igarashi T, Kondo N (1988) Protection by the epidermis of photosynthesis against UV-C radiation estimated by chlorophyll a fluorescence. Physiol Plant 74:34–38

    Article  CAS  Google Scholar 

  • Singh RP, Pandey VB (1994) Further flavonoids ofEchinops niveus. Fitoterapia 65:374

    CAS  Google Scholar 

  • Singh S, Upadhyay RK, Pandey MB, Singh JP, Pandey VB (2006) Flavonoids ofEchinops echinatus. J Asian Nat Prod Res 8:197–200

    Article  CAS  PubMed  Google Scholar 

  • Smith J, Markham KR (1998) Tautomerism of flavonol glucosides: relevance to plant UV protection and ower colour. Journal of Photochemistry and Photobiology (A) 11:99–105

    Article  Google Scholar 

  • Steyn WJ, Wand SJE, Holcroft DM, Jacobs G (2002) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytologist 155:349–361

    Article  CAS  Google Scholar 

  • Strack D, Heilemann J, Klinkott JS (1988) Cell wall-bound phenolics from Norway spruce (Picea abies) needles. Zeitschrift für Naturforschung C, A Journal of Biosciences 43(1–2):37–41

    Google Scholar 

  • Strid A, Chow WS, Anderson JM (1994) UV-B damage and protection at the molecular level in plants. Photosynth Res 39:475–489

    Article  CAS  PubMed  Google Scholar 

  • Sytar O, Bruckova K, Hunkova E, Zivcak M, Konate K, Brestic M (2015) The application of multiplex fluorimetric sensor for the analysis of flavonoids content in the medicinal herbs familyAsteraceae,Lamiaceae,Rosaceae. Biol Res 48:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Tavarini S, Degl’Innocenti E, Remorini D, Massai R, Guidi L (2008) Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Hayward kiwifruit. Food Chem 107:282–288

    Article  CAS  Google Scholar 

  • Terfa MT, Solhaug KA, Gislerød HR, Olsen JE, Torre S (2013) A high proportion of blue light increases the photosynthesis capacity and leaf formation rate ofRosa × hybrida but does not affect time to flower opening. Physiol Plant 148:146–159

    Article  CAS  PubMed  Google Scholar 

  • Trendafilovaa A, Todorovaa M, Nikolovab M, Gavrilovab A, Vitkovab A (2011) Flavonoid constituents and free radical scavenging activity ofAlchemilla mollis. Nat Prod Commun 6:1851–1854

    Google Scholar 

  • Treutter D (1989) Chemical reaction detection of catechins and proanthocyanins with 4-dimethylamino-cinnamaldehyde. J Chromatogr 467:185–193

    Article  CAS  Google Scholar 

  • Tulipani S, Mezzetti B, Capocasa F, Bompadre S, Beekwilder J, Ric de Vos CH, Capanoglu E, Bovy A, Battino M (2008) Antioxidants, phenolic compounds, and nutritional quality of different strawberry genotypes. J Agric Food Chem 56:696–704

    Article  CAS  PubMed  Google Scholar 

  • Tulyathan V, Boondee K, Mahawanich T (2005) Characteristics of starch from water chestnut (Trapa bispinosa Roxb.). J Food Biochem 29:337–348

    Article  CAS  Google Scholar 

  • Veit M, Beckert C, Höhne C, Bauer K, Geiger H (1995) Interspecific and intraspecific variation of phenolics in the genus Equisetum subgenus Equisetum. Phytochemistry 38:881–891

    Article  CAS  Google Scholar 

  • Verhoeven HA, de Vos CR, Bino RJ, Hall RD (2006) Plant metabolomics strategies based upon quadrupole time of flight mass spectrometry (QTOF-MS) in plant metabolomics. Springer, Berlin

    Book  Google Scholar 

  • Verpoorte R, Choi YH, Kim HK (2005) Ethnopharmacology and systems biology: a perfect holistic match. J Ethnopharmacol 100:53–56

    Article  CAS  PubMed  Google Scholar 

  • Vitrac X, Moni JP, Vercauteren J, Deffieux G, Mérillon JM (2002) Direct liquid chromatography analysis of resveratrol derivatives and flavanonols in wines with absorbance and fluorescence detection. Anal Chim Acta 458:103–110

    Article  CAS  Google Scholar 

  • Vogt T, Pollak P, Tarlyn N, Taylor LP (1994) Pollination- or wound-induced kaempferol accumulation in petunia stigmas enhances seed production. Plant Cell 6:11–23

    Article  CAS  PubMed Central  Google Scholar 

  • Wagner H, Gilbert M, Wilhelm C (2003) Longitudinal leaf gradients of UV‐absorbing screening pigments in barley (Hordeum vulgare). Physiol Plant 117:383–391

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Ji C (2008) Tannin concentration enhances seed caching by scatter-hoarding rodents: an experiment using artificial seeds. Acta Oecol 34:379–385

    Article  Google Scholar 

  • Wang SY, Lin H-S (2000) Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J Agric Food Chem 48:140–146

    Article  CAS  PubMed  Google Scholar 

  • Wojdyło A, Oszmiański J, Czemerys R (2007) Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem 105:940–949

    Article  CAS  Google Scholar 

  • Wollenweber E, Dietz VH (1981) Occurrence and distribution of free flavonoid aglycones in plants. Phytochemistry 20:869–932

    Article  CAS  Google Scholar 

  • Wu X, Gu L, Prior RL, McKay S (2004) Characterization of anthocyanins and proanthocyanidins in some cultivars ofRibes,Aronia, andSambucus and their antioxidant capacity. J Agric Food Chem 52:7846–7856

    Article  CAS  PubMed  Google Scholar 

  • Wulf JS, Rühmann S, Rego I, Puhl I, Treutter D, Zude M (2008) Nondestructive application of laser-induced fluorescence spectroscopy for quantitative analyses of phenolic compounds in strawberry fruits (Fragaria x ananassa). J Agric Food Chem 56:2875–2882

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Qi X, Wang W, Chen G (2005) Separation and determination of flavonoids inAgrimonia pilosa Ledeb. by capillary electrophoresis with electrochemical detection. J Sep Sci 28:647–652

    Article  CAS  PubMed  Google Scholar 

  • Yanishlieva N (2001) Inhibiting oxidation. In: Pokorny J, Yanishlieva N, Gordon M (eds) Antioxidants in food. Woodhead Publishing Ltd, Cambridge

    Google Scholar 

  • Yanishlieva N, Marinova E, Pokorný J (2006) Natural antioxidants from herbs and spices. Eur J Lipid Sci Tech 108:776–793

    Article  CAS  Google Scholar 

  • Yoo KM, Lee CH, Lee H, Moon B, Lee CY (2008) Relative antioxidant and cytoprotective activities of common herbs. Food Chem 106:929–936

    Article  CAS  Google Scholar 

  • Zainuddin A, Pokorny J, Venskutonis R (2002) Antioxidant activity of sweetgrass (Hierochloë odorata Wahlnb.) extract in lard and rapeseed oil emulsions. Nahrung 46:15–17

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Sun C, Chen K, Li X (2011) Flavonoids, phenolics, and antioxidant capacity in the flower ofEriobotrya japonica Lindl. Int J Mol Sci 12(5):2935–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zivcak M, Brestic M, Olsovska K (2008a) Application of photosynthetic parameters in screening of wheat (Triticum aestivum L.) genotypes for improved drought and high temperature tolerance. In: Allen JF, Gantt E, Goldbeck JH, Osmond B (eds) Photosynthesis. Energy from the sun: 14th international congress on photosynthesis. Springer, Dordrecht

    Google Scholar 

  • Zivcak M, Brestic M, Olsovska K (2008b) Physiological parameters useful in screening for improved tolerance to drought in winter wheat (Triticum aestivum L.). Cereal Res Commun 36:1943–1946

    Google Scholar 

  • Zivcak M, Brestic M, Olsovska K, Slamka P (2008c) Performance index as a sensitive indicator of water stress in Triticum aestivum. Plant Soil Environ 54:133–139

    Article  CAS  Google Scholar 

  • Zivcak M, Brestic M, Balatová Z, Drevenaková P, Olsovska K, Kalaji HM, Allakhverdiev SI (2013) Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth Res 117:529–546

    Article  CAS  PubMed  Google Scholar 

  • Zivcak M, Olšovská K, Slamka P, Galambošová J, Raraj V, Shao HB, Kalaji MH, Brestič M (2014a) Measurements of chlorophyll fluorescence in different leaf positions may detect nitrogen deficiency in wheat. Zemdirbyste Agric 101:437–444

    Article  Google Scholar 

  • Zivcak M, Brestic M, Kalaji HM, Govindjee (2014b) Photosynthetic responses of sun-and shade-grown barley leaves to high light: is the lower PSII connectivity in shade leaves associated with protection against excess of light? Photosynth Res 119:339–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zivcak M, Kalaji HM, Shao HB, Olšovská K, Brestič M (2014c) Photosynthetic proton and electron transport in wheat leaves under prolonged moderate drought stress. J Photochem Photobiol B 137:107–115

    Article  CAS  PubMed  Google Scholar 

  • Zivcak M, Olšovská K, Slamka P, Galambošová J, Rataj V, Shao HB, Brestič M (2014d) Application of chlorophyll fluorescence performance indices to assess the wheat photosynthetic functions influenced by nitrogen deficiency. Plant Soil Environ 60:210–215

    CAS  Google Scholar 

Download references

Acknowledgement

Supported by project “AgroBioTech” of the Operational Programme Research and development, Structural Funds of EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Brestic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sytar, O., Zivcak, M., Brestic, M. (2016). Noninvasive Methods to Support Metabolomic Studies Targeted at Plant Phenolics for Food and Medicinal Use. In: Hakeem, K., Tombuloğlu, H., Tombuloğlu, G. (eds) Plant Omics: Trends and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-31703-8_18

Download citation

Publish with us

Policies and ethics