Skip to main content

Unleashing the Graphic Processing Units-Based Version of NAMD

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2016)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9656))

Included in the following conference series:

Abstract

NAMD is a parallel molecular dynamics software designed for high-performance simulations of large biomolecular systems. It scales from single computer up to hundreds of processors as high-end parallel platforms. Additionally, considering the evolution of Graphics Processing Units (GPUs) as a general purpose massively parallel co-processors, NAMD has included this kind of devices to leverage its computational power. In this work we analyze current NAMD GPU solution and develop an alternative based on Newton’s third law. The results shows a significant reduction of the execution time of GPU computations, of up to 20 % when compared with a highly tuned version of the original GPU-enabled NAMD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berendsen, H.J.C., van der Spoel, D., van Drunen, R.: Gromacs: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91(1–3), 43–56 (1995)

    Article  Google Scholar 

  2. Anderson, J.A., Lorenz, C.D., Travesset, A.: General purpose molecular dynamics simulations fully implemented on graphics processing units. J. Comp. Phys. 227(10), 5342–5359 (2008)

    Article  MATH  Google Scholar 

  3. Bhatele, A., Kumar, S., Mei, C., Phillips, J.C., Zheng, G., Kale, L.V., NAMD, : A portable and highly scalable program for biomolecular simulations. Technical report UIUCDCS-R-2009-3034, Department of Computer Science, University of Illinois, April 2009

    Google Scholar 

  4. Case, D.A., Cheatham, T.E., Darden, T., Gohlke, H., Luo, R., Merz, K.M., Onufriev, A., Simmerling, C., Wang, B., Woods, R.J.: The amber biomolecular simulation programs. J. Comput. Chem. 26(16), 1668–1688 (2005)

    Article  Google Scholar 

  5. Coulomb, C.A.: Premier-[troisième] mémoire sur l’electricité et le magnétisme. Académie Royale des sciences (1785)

    Google Scholar 

  6. Darema, F.: The SPMD model: past, present and future. In: Cotronis, Y., Dongarra, J. (eds.) PVM/MPI 2001. LNCS, vol. 2131, p. 1. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Friedrichs, M.S., Eastman, P., Vaidyanathan, V., Houston, M., Legrand, S., Beberg, A.L., Ensign, D.L., Bruns, C.M., Pande, V.S.: Accelerating molecular dynamic simulation on graphics processing units. J. Comp. Chem. 30, 864–872 (2009)

    Article  Google Scholar 

  8. Götz, A.W., Williamson, M.J., Xu, D., Poole, D., Grand, S.L., Walker, R.C.: Routine microsecond molecular dynamics simulations with amber on GPUs. 1. generalized born. J. Chem. Theor. Comput. 8, 1542–1555 (2012)

    Article  Google Scholar 

  9. Imbernón, B., Llanes, A., Peña-García, J., Abellán, J.L., Pérez-Sánchez, H., Cecilia, J.M.: Enhancing the parallelization of non-bonded interactions kernel for virtual screening on GPUs. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2015, Part II. LNCS, vol. 9044, pp. 620–626. Springer, Heidelberg (2015)

    Google Scholar 

  10. Kirk, D., Hwu, W.: Programming Massively Parallel Processors: a Hands-on Approach. Morgan Kaufmann, San Francisco (2012)

    Google Scholar 

  11. Lennard-Jones, J.E.: Cohesion. Proc. Phys. Soc. 43, 461–482 (1931)

    Article  MATH  Google Scholar 

  12. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comp. Chem. 26, 1781–1802 (2005)

    Article  Google Scholar 

  13. Phillips, J.C., Stone, J.E., Schulten, K.: Adapting a message-driven parallel application to GPU-accelerated clusters. In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, SC 2008, pp. 8:1–8:9. IEEE Press, Piscataway, NJ, USA (2008)

    Google Scholar 

  14. Stone, J.E., Phillips, J.C., Freddolino, P.L., Hardy, D.J., Trabuco, L.G., Schulten, K.: Accelerating molecular modeling applications with graphics processors. J. Comp. Chem. 28, 2618–2640 (2007)

    Article  Google Scholar 

  15. Trott, C.R., Winterfeld, L., Crozier, P.S., General-purpose molecular dynamics simulations on gpu-based clusters (2010). arXiv preprint arXiv:1009.4330

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Ezzatti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

González, Y., Ezzatti, P., Paulino, M. (2016). Unleashing the Graphic Processing Units-Based Version of NAMD. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2016. Lecture Notes in Computer Science(), vol 9656. Springer, Cham. https://doi.org/10.1007/978-3-319-31744-1_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31744-1_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31743-4

  • Online ISBN: 978-3-319-31744-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics