Skip to main content

The Bernstein Branch-and-Bound Unconstrained Global Optimization Algorithm for MINLP Problems

  • Conference paper
  • First Online:
Scientific Computing, Computer Arithmetic, and Validated Numerics (SCAN 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9553))

  • 736 Accesses

Abstract

In this work a Bernstein global optimization algorithm to solve unconstrained polynomial mixed-integer nonlinear programming (MINLP) problems is proposed. The proposed algorithm use a branch-and-bound framework and possesses several new features, such as a modified subdivision procedure, the Bernstein box consistency and the Bernstein hull consistency procedures to prune the solution search space. The performance of the proposed algorithm is numerically investigated and compared with previously reported Bernstein global optimization algorithm on a set of 10 test problems. The findings of the tests establishes the efficacy of the proposed algorithm over the previously reported Bernstein algorithm in terms of the chosen performance metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Albeit, the Bernstein global optimization algorithm in [9] is for NLP problems, we modify it at appropriate places to handle integer decision variables.

  2. 2.

    Due to lack of space and time, we skip the presentation of the accelerating devices. However, the interested reader can refer to [8, 10] for the exact details about the topic.

  3. 3.

    We note that concacity test is found to give small improvement in the number of boxes processed. Hence, we skipped its application in this numerical experimentation.

References

  1. The Mathworks Inc., MATLAB version 7.1 (R14), Natick, MA (2005)

    Google Scholar 

  2. Bonami, P., Biegler, L.T., Conn, A., Cornuejols, G., Grossmann, I.E., Laird, C., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optim. 5(2), 186–204 (2008)

    Article  MathSciNet  Google Scholar 

  3. Buchheim, C., D’Ambrosio, C.: Box-constrained mixed-integer polynomial optimization using separable underestimators. In: Lee, J., Vygen, J. (eds.) IPCO 2014. LNCS, vol. 8494, pp. 198–209. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  4. D’Ambrosio, C., Lodi, A.: Mixed integer nonlinear programming tools: an updated practical overview. Ann. Oper. Res. 204(1), 301–320 (2013)

    Article  MathSciNet  Google Scholar 

  5. Floudas, C.A.: Nonlinear and Mixed-integer Optimization: Fundamentals and Applications. Oxford University Press, New York (1995)

    Book  Google Scholar 

  6. GAMS Development Corp.: GAMS-The solver manuals, Washington, DC (2009)

    Google Scholar 

  7. Garloff, J.: The Bernstein algorithm. Interval Comput. 2, 154–168 (1993)

    MathSciNet  MATH  Google Scholar 

  8. Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis. CRC Press, New York (2004)

    MATH  Google Scholar 

  9. Nataraj, P.S.V., Arounassalame, M.: A new subdivision algorithm for the Bernstein polynomial approach to global optimization. Int. J. Autom. Comput. 4(4), 342–352 (2007)

    Article  Google Scholar 

  10. Nataraj, P.S.V., Arounassalame, M.: Constrained global optimization of multivariate polynomials using Bernstein branch and prune algorithm. J. Glob. Optim. 49(2), 185–212 (2011)

    Article  MathSciNet  Google Scholar 

  11. Patil, B.V., Nataraj, P.S.V., Bhartiya, S.: Global optimization of mixed-integer nonlinear (polynomial) programming problems: the Bernstein polynomial approach. Computing 94(2–4), 325–343 (2012)

    Article  MathSciNet  Google Scholar 

  12. Ratz, D., Csendes, T.: On the selection of subdivision directions in interval branch-and-bound methods for global optimization. J. Glob. Optim. 7(2), 183–207 (1995)

    Article  MathSciNet  Google Scholar 

  13. Stahl, V.: Interval methods for bounding the range of polynomials and solving systems of nonlinear equations. Ph.D. thesis, Johannes Kepler University, Linz (1995)

    Google Scholar 

  14. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dordrecht (2002)

    Book  Google Scholar 

  15. Verschelde, J.: PHC pack, the database of polynomial systems. Technical report, Mathematics Department, University of Illinois, Chicago, USA (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhagyesh V. Patil .

Editor information

Editors and Affiliations

Appendix

Appendix

We list below the test problems studied in this work for conducting different numerical experiments. We denote the test function as \(f(x_{k})\), and the initial bounds as \(\mathbf {x}_{k}\), \(k=1,2,\ldots ,l\).

  1. 1.

    Camel back: The six hump camel back function

    $$\begin{aligned} \min ~f(x)&= 4x_{1}^{2}-2.1x_{1}^{4}+(1/3)x_{1}^{6}+x_{1}x_{2}-4x_{2}^{2}+4x_{2}^{4} \\& x_{1} \in \mathbb {Z}, x_{2} \in \mathbb {R} \end{aligned}$$

    where \(\mathbf {x}_{k}=[-3,3], k=1,2.\)

  2. 2.

    Booth: The function defined by Booth

    $$\begin{aligned} \min ~f(x)&= 74-38x_{1}+5x_{1}^{2}-34x_{2}+8x_{1}x_{2}+5x_{2}^{2} \\& x_{1} \in \mathbb {Z}, x_{2} \in \mathbb {R} \end{aligned}$$

    where \(\mathbf {x}_{k}=[-5,5],k=1,2.\)

  3. 3.

    Reaction diffusion: A three dimensional reaction diffusion problem

    $$\begin{aligned} \min ~f(x)&= -x_{1}+2x_{2}-x_{3}-0.835634534x_{2}(1-x_{2}) \\& x_{1}, x_{2} \in \mathbb {Z}, x_{3} \in \mathbb {R} \end{aligned}$$

    where \(\mathbf {x}_{k}=[-5,5], k=1,2,3.\)

  4. 4.

    Caprasse’s: The system defined by Caprasse

    $$\begin{aligned} \min ~f(x) =&-x_{1}x_{3}^{3}+4x_{2}x_{3}^{2}x_{4}+4x_{1}x_{3}x_{4}^{2}+2x_{2}x_{4}^{3}+4x_{1}x_{3}\\&+ 4x_{3}^{2}-10x_{2}x_{4}-10x_{4}^{2}+2 \\& x_{1}, x_{3} \in \mathbb {Z}, x_{2}, x_{4} \in \mathbb {R} \end{aligned}$$

    where \(\mathbf {x}_{k}=[-1,1], k=1,3\) and \(\mathbf {x}_{k}=[-0.5,0.5], k=2,4.\)

  5. 5.

    Adaptive LV: A neural network modeled by an adaptive Lotka-Volterra system

    $$\begin{aligned} \min ~f(x)&= x_{1}x_{2}^{2}+x_{1}x_{3}^{2}+x_{1}x_{4}^{2}-1.1x_{1}+1 \\& x_{1}, x_{2} \in \mathbb {Z}, x_{3}, x_{4} \in \mathbb {R} \end{aligned}$$

    where \(\mathbf {x}_{1}=[0, 1], \mathbf {x}_{2}=[-20, 20]\), \(\mathbf {x}_{k}=[-2, 2], k=3,4.\)

  6. 6.

    AH Wright: The system defined by Wright

    $$\begin{aligned} \min ~f(x)&= x_{1}+x_{2}+x_{3}+x_{4}-x_{5}+x_{5}^{2}-10 \\&x_{1}, x_{2} \in \mathbb {R}, x_{3}, x_{4}, x_{5} \in \mathbb {Z} \end{aligned}$$

    where \(\mathbf {x}_{k}=[-5,5], k=1,\ldots ,5.\)

  7. 7.

    Magnetism in Physics (6): A six variable magnetism in physics problem

    $$\begin{aligned} \min ~f(x)&= 2x_{1}^{2}+2x_{2}^{2}+2x_{3}^{2}+2x_{4}^{2}+2x_{5}^{2}+x_{6}^{2}-x_{6} \\& x_{1}, x_{2}, x_{3} \in \mathbb {Z}, x_{4}, x_{5}, x_{6} \in \mathbb {R} \end{aligned}$$

    where \(\mathbf {x}_{k}=[-1,1], k=1,\ldots ,6.\)

  8. 8.

    Butcher: A function defined by Butcher

    $$\begin{aligned} \min ~f(x)&= x_{6}x_{2}^{2}+x_{5}x_{3}^{2}-x_{1}x_{4}^{2}+x_{4}^{3}+x_{4}^{2}-(1/3)x_{1}+(4/3)x_{4} \\& x_{1} \in \mathbb {Z}, x_{k} \in \mathbb {R}, k=2,\ldots ,6 \end{aligned}$$

    where \(\mathbf {x}_{k} = [-1,1], k=1,2,3, \mathbf {x}_{4}=[-0.1,0.2], \mathbf {x}_{5} = [-0.3,1.1], \mathbf {x}_{6}=[-1.1,-0.3].\)

  9. 9.

    Magnetism in physics (7): Seven variable magnetism in physics problem

    $$\begin{aligned} \min ~f(x)&= x_{1}^{2}+2x_{2}^{2}+2x_{3}^{2}+2x_{4}^{2}+2x_{5}^{2}+2x_{6}^{2}+2x_{7}^{2}-x_{1} \\& x_{1} \in \mathbb {R}, x_{k} \in \mathbb {Z}, k=2,\ldots ,7 \end{aligned}$$

    where \(\mathbf {x}_{k}=[-1,1], k=1,\ldots ,7.\)

  10. 10.

    Heart dipole: A heart dipole problem

    $$\begin{aligned} \min ~f(x) =&-x_{1}x_{6}^{3}+3x_{1}x_{6}x_{7}^{2}-x_{3}x_{7}^{3}+3x_{3}x_{7}x_{6}^{2}-x_{2}x_{5}^{3}\\&+3x_{2}x_{5}x_{8}^{2}-x_{4}x_{8}^{3}+\ 3x_{4}x_{8}x_{5}^{2}-0.9563453 \\&x_{k} \in \mathbb {Z}, k=1,\ldots ,5, x_{k} \in \mathbb {R}, k=5,7,8 \end{aligned}$$

    where \(\mathbf {x}_{k} = [-1,1], k=1,2,3, \mathbf {x}_{4}=[-1,0],\mathbf {x}_{5}=[0,1], \mathbf {x}_{6}=[-0.1,0.2]\)\(\mathbf {x}_{7}=[-0.3,1.1], \mathbf {x}_{8}=[-1.1,-0.3].\)

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Patil, B.V., Nataraj, P.S.V. (2016). The Bernstein Branch-and-Bound Unconstrained Global Optimization Algorithm for MINLP Problems. In: Nehmeier, M., Wolff von Gudenberg, J., Tucker, W. (eds) Scientific Computing, Computer Arithmetic, and Validated Numerics. SCAN 2015. Lecture Notes in Computer Science(), vol 9553. Springer, Cham. https://doi.org/10.1007/978-3-319-31769-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31769-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31768-7

  • Online ISBN: 978-3-319-31769-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics