Skip to main content

Mechanisms Regulating Spermatogonial Differentiation

  • Chapter
  • First Online:
Molecular Mechanisms of Cell Differentiation in Gonad Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 58))

Abstract

Mammalian spermatogenesis is a complex and highly ordered process by which male germ cells proceed through a series of differentiation steps to produce haploid flagellated spermatozoa. Underlying this process is a pool of adult stem cells, the spermatogonial stem cells (SSCs), which commence the spermatogenic lineage by undertaking a differentiation fate decision to become progenitor spermatogonia. Subsequently, progenitors acquire a differentiating spermatogonia phenotype and undergo a series of amplifying mitoses while becoming competent to enter meiosis. After spermatocytes complete meiosis, post-meiotic spermatids must then undergo a remarkable transformation from small round spermatids to a flagellated spermatozoa with extremely compacted nuclei. This chapter reviews the current literature pertaining to spermatogonial differentiation with an emphasis on the mechanisms controlling stem cell fate decisions and early differentiation events in the life of a spermatogonium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbor VA, Tao S, Lei N et al (2013) A Wt1-Dmrt1 transgene restores DMRT1 to Sertoli cells of Dmrt1(-/-) testes: a novel model of DMRT1-deficient germ cells. Biol Reprod 88:51

    Article  PubMed  CAS  Google Scholar 

  • Aloisio GM, Nakada Y, Saatcioglu HD et al (2014) PAX7 expression defines germline stem cells in the adult testis. J Clin Invest 124:3929–3944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altman E, Yango P, Moustafa R et al (2014) Characterization of human spermatogonial stem cell markers in fetal, pediatric, and adult testicular tissues. Reproduction 148:417–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amann RP (2008) The cycle of the seminiferous epithelium in humans: a need to revisit? J Androl 29:469–487

    Article  PubMed  Google Scholar 

  • Anderson R, Schaible K, Heasman J et al (1999) Expression of the homophilic adhesion molecule, Ep-CAM, in the mammalian germ line. J Reprod Fertil 116:379–384

    Article  CAS  PubMed  Google Scholar 

  • Anderson EL, Baltus AE, Roepers-Gajadien HL et al (2008) Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc Natl Acad Sci U S A 105:14976–14980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arighi E, Borrello MG, Sariola H (2005) RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev 16:441–467

    Article  CAS  PubMed  Google Scholar 

  • Avarbock MR, Brinster CJ, Brinster RL (1996) Reconstitution of spermatogenesis from frozen spermatogonial stem cells. Nat Med 2:693–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballow D, Meistrich ML, Matzuk M et al (2006) Sohlh1 is essential for spermatogonial differentiation. Dev Biol 294:161–167

    Article  CAS  PubMed  Google Scholar 

  • Bartmanska J, Clermont Y (1983) Renewal of type A spermatogonia in adult rats. Cell Tissue Kinet 16:135–143

    CAS  PubMed  Google Scholar 

  • Benavides-Garcia R, Joachim R, Pina NA et al (2015) Granulocyte colony-stimulating factor prevents loss of spermatogenesis after sterilizing busulfan chemotherapy. Fertil Steril 103:270–280

    Article  CAS  PubMed  Google Scholar 

  • Besmer P, Manova K, Duttlinger R et al (1993) The kit-ligand (steel factor) and its receptor c-kit/W: pleiotropic roles in gametogenesis and melanogenesis. Dev Suppl 125–137

    Google Scholar 

  • Bowles J, Knight D, Smith C et al (2006) Retinoid signaling determines germ cell fate in mice. Science 312:596–600

    Article  CAS  PubMed  Google Scholar 

  • Braun RE, Behringer RR, Peschon JJ et al (1989) Genetically haploid spermatids are phenotypically diploid. Nature 337:373–376

    Article  CAS  PubMed  Google Scholar 

  • Braydich-Stolle L, Kostereva N, Dym M et al (2007) Role of Src family kinases and N-Myc in spermatogonial stem cell proliferation. Dev Biol 304:34–45

    Article  CAS  PubMed  Google Scholar 

  • Brinster RL, Zimmermann JW (1994) Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci U S A 91:11298–11302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buaas FW, Kirsh AL, Sharma M et al (2004) Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet 36:647–652

    Article  CAS  PubMed  Google Scholar 

  • Buageaw A, Sukhwani M, Ben-Yehudah A et al (2005) GDNF family receptor alpha1 phenotype of spermatogonial stem cells in immature mouse testes. Biol Reprod 73:1011–1016

    Article  CAS  PubMed  Google Scholar 

  • Busada JT, Kaye EP, Renegar RH et al (2014) Retinoic acid induces multiple hallmarks of the prospermatogonia-to-spermatogonia transition in the neonatal mouse. Biol Reprod 90:64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Busada JT, Chappell VA, Niedenberger BA et al (2015a) Retinoic acid regulates Kit translation during spermatogonial differentiation in the mouse. Dev Biol 397:140–149

    Article  CAS  PubMed  Google Scholar 

  • Busada JT, Niedenberger BA, Velte EK et al (2015b) Mammalian target of rapamycin complex 1 (mTORC1) is required for mouse spermatogonial differentiation in vivo. Dev Biol 407:90–102

    Article  CAS  PubMed  Google Scholar 

  • Caires KC, de Avila JM, Cupp AS et al (2012) VEGFA family isoforms regulate spermatogonial stem cell homeostasis in vivo. Endocrinology 153:887–900

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty P, Buaas FW, Sharma M et al (2014) LIN28A marks the spermatogonial progenitor population and regulates its cyclic expansion. Stem Cells 32:860–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan F, Oatley MJ, Kaucher AV et al (2014) Functional and molecular features of the Id4+ germline stem cell population in mouse testes. Genes Dev 28:1351–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chappell VA, Busada JT, Keiper BD et al (2013) Translational activation of developmental messenger RNAs during neonatal mouse testis development. Biol Reprod 89:61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen C, Ouyang W, Grigura V et al (2005) ERM is required for transcriptional control of the spermatogonial stem cell niche. Nature 436:1030–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LY, Brown PR, Willis WB et al (2014) Peritubular myoid cells participate in male mouse spermatogonial stem cell maintenance. Endocrinology 155:4964–4974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen LY, Willis WD, Eddy EM (2016) Targeting the Gdnf Gene in peritubular myoid cells disrupts undifferentiated spermatogonial cell development. Proc Natl Acad Sci U S A 113:1829–1834

    Google Scholar 

  • Chiarini-Garcia H, Hornick JR, Griswold MD et al (2001) Distribution of type A spermatogonia in the mouse is not random. Biol Reprod 65:1179–1185

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury AK, Marshall GR (1980) Irregular pattern of spermatogenesis in the baboon (Papio anubis) and its possible mechanism. In: Steinberger A, Steinberger E (eds) Testicular development, structure and function. Raven, New York, pp 129–137

    Google Scholar 

  • Chowdhury AK, Steinberger E (1976) A study of germ cell morphology and duration of spermatogenic cycle in the baboon, Papio anubis. Anat Rec 185:155–169

    Article  CAS  PubMed  Google Scholar 

  • Clermont Y (1963) The cycle of the seminiferous epithelium in man. Am J Anat 112:35–51

    Article  CAS  PubMed  Google Scholar 

  • Clermont Y (1969) Two classes of spermatogonial stem cells in the monkey (Cercopithecus aethiops). Am J Anat 126:57–71

    Article  CAS  PubMed  Google Scholar 

  • Clermont Y (1972) Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev 52:198–236

    CAS  PubMed  Google Scholar 

  • Clermont Y, Antar M (1973) Duration of the cycle of the seminiferous epithelium and the spermatogonial renewal in the monkey Macaca arctoides. Am J Anat 136:153–165

    Article  CAS  PubMed  Google Scholar 

  • Clermont Y, Bustos-Obregon E (1968) Re-examination of spermatogonial renewal in the rat by means of seminiferous tubules mounted “in toto”. Am J Anat 122:237–247

    Article  CAS  PubMed  Google Scholar 

  • Clermont Y, Hermo L (1975) Spermatogonial stem cells in the albino rat. Am J Anat 142:159–175

    Article  CAS  PubMed  Google Scholar 

  • Clermont Y, Leblond CP (1959) Differentiation and renewal of spermatogonia in the monkey, Macacus rhesus. Am J Anat 104:237–271

    Article  CAS  PubMed  Google Scholar 

  • Clermont Y, Leblond CP, Messier B (1959) Duration of the cycle of the seminal epithelium of the rat. Arch Anat Microsc Morphol Exp 48(Suppl):37–55

    CAS  PubMed  Google Scholar 

  • Costoya JA, Hobbs RM, Barna M et al (2004) Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet 36:653–659

    Article  CAS  PubMed  Google Scholar 

  • Coulombre J, Russell ES (1954) Analysis of the pleiotropism at the W-locus in the mouse. The effects of W and Wv substitution upon postnatal development of germ cells. J Exp Zool 126:277–295

    Article  Google Scholar 

  • Culty M (2013) Gonocytes, from the fifties to the present: is there a reason to change the name? Biol Reprod 89:46

    Article  PubMed  CAS  Google Scholar 

  • Dann CT, Alvarado AL, Molyneux LA et al (2008) Spermatogonial stem cell self-renewal requires OCT4, a factor downregulated during retinoic acid-induced differentiation. Stem Cells 26:2928–2937

    Article  CAS  PubMed  Google Scholar 

  • DeFalco T, Potter SJ, Williams AV et al (2015) Macrophages contribute to the spermatogonial niche in the adult testis. Cell Rep 12:1107–1119

    Article  CAS  PubMed  Google Scholar 

  • de Rooij DG (1973) Spermatogonial stem cell renewal in the mouse. I. Normal situation. Cell Tissue Kinet 6:281–287

    PubMed  Google Scholar 

  • de Rooij DG, Grootegoed JA (1998) Spermatogonial stem cells. Curr Opin Cell Biol 10:694–701

    Article  PubMed  Google Scholar 

  • de Rooij DG, Russell LD (2000) All you wanted to know about spermatogonia but were afraid to ask. J Androl 21:776–798

    PubMed  Google Scholar 

  • Dirami G, Ravindranath N, Achi MV et al (2001) Expression of Notch pathway components in spermatogonia and Sertoli cells of neonatal mice. J Androl 22:944–952

    Article  CAS  PubMed  Google Scholar 

  • Dovey SL, Valli H, Hermann BP et al (2013) Eliminating malignant potential from therapeutic human spermatogonial stem cells. J Clin Invest 123:1833–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dym M, Clermont Y (1970) Role of spermatogonia in the repair of the seminiferous epithelium following x-irradiation of the rat testis. Am J Anat 128:265–282

    Article  CAS  PubMed  Google Scholar 

  • Dym M, Jia MC, Dirami G et al (1995) Expression of c-kit receptor and its autophosphorylation in immature rat type A spermatogonia. Biol Reprod 52:8–19

    Article  CAS  PubMed  Google Scholar 

  • Ehmcke J, Schlatt S (2006) A revised model for spermatogonial expansion in man: lessons from non-human primates. Reproduction 132:673–680

    Article  CAS  PubMed  Google Scholar 

  • Ehmcke J, Luetjens CM, Schlatt S (2005a) Clonal organization of proliferating spermatogonial stem cells in adult males of two species of non-human primates, Macaca mulatta and Callithrix jacchus. Biol Reprod 72:293–300

    Article  CAS  PubMed  Google Scholar 

  • Ehmcke J, Simorangkir DR, Schlatt S (2005b) Identification of the starting point for spermatogenesis and characterization of the testicular stem cell in adult male rhesus monkeys. Hum Reprod 20:1185–1193

    Article  PubMed  Google Scholar 

  • Ehmcke J, Wistuba J, Schlatt S (2006) Spermatogonial stem cells: questions, models and perspectives. Hum Reprod Update 12:275–282

    Article  CAS  PubMed  Google Scholar 

  • Endo T, Romer KA, Anderson EL et al (2015) Periodic retinoic acid-STRA8 signaling intersects with periodic germ-cell competencies to regulate spermatogenesis. Proc Natl Acad Sci U S A 112:E2347–E2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falender AE, Freiman RN, Geles KG et al (2005) Maintenance of spermatogenesis requires TAF4b, a gonad-specific subunit of TFIID. Genes Dev 19:794–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fawcett DW (1959) The occurrence of intercellular bridges in groups of cells exhibiting synchronous differentiation. J Biophys Biochem Cytol 3:453–460

    Article  Google Scholar 

  • Fawcett DW, Neaves WB, Flores MN (1973) Comparative observations on intertubular lymphatics and the organization of the interstitial tissue of the mammalian testis. Biol Reprod 9:500–532

    CAS  PubMed  Google Scholar 

  • Filipponi D, Hobbs RM, Ottolenghi S et al (2007) Repression of kit expression by Plzf in germ cells. Mol Cell Biol 27:6770–6781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fouchecourt S, Godet M, Sabido O et al (2006) Glial cell-line-derived neurotropic factor and its receptors are expressed by germinal and somatic cells of the rat testis. J Endocrinol 190:59–71

    Article  CAS  PubMed  Google Scholar 

  • Fouquet JP, Dadoune JP (1986) Renewal of spermatogonia in the monkey (Macaca fascicularis). Biol Reprod 35:199–207

    Article  CAS  PubMed  Google Scholar 

  • Garcia TX, Hofmann MC (2013) NOTCH signaling in Sertoli cells regulates gonocyte fate. Cell Cycle 12:2538–2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia TX, DeFalco T, Capel B et al (2013) Constitutive activation of NOTCH1 signaling in Sertoli cells causes gonocyte exit from quiescence. Dev Biol 377:188–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia TX, Farmaha JK, Kow S et al (2014) RBPJ in mouse Sertoli cells is required for proper regulation of the testis stem cell niche. Development 141:4468–4478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gassei K, Orwig KE (2013) SALL4 expression in gonocytes and spermatogonial clones of postnatal mouse testes. PLoS One 8:e53976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geissler EN, McFarland EC, Russell ES (1981) Analysis of pleiotropism at the dominant white-spotting (W) locus of the house mouse: a description of ten new W alleles. Genetics 97:337–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gely-Pernot A, Raverdeau M, Celebi C et al (2012) Spermatogonia differentiation requires retinoic acid receptor gamma. Endocrinology 153:438–449

    Article  CAS  PubMed  Google Scholar 

  • Goertz MJ, Wu Z, Gallardo TD et al (2011) Foxo1 is required in mouse spermatogonial stem cells for their maintenance and the initiation of spermatogenesis. J Clin Invest 121:3456–3466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grasso M, Fuso A, Dovere L et al (2012) Distribution of GFRA1-expressing spermatogonia in adult mouse testis. Reproduction 143:325–332

    Article  CAS  PubMed  Google Scholar 

  • Greenbaum MP, Yan W, Wu MH et al (2006) TEX14 is essential for intercellular bridges and fertility in male mice. Proc Natl Acad Sci U S A 103:4982–4987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griswold MD, Oatley JM (2013) Concise review: defining characteristics of mammalian spermatogenic stem cells. Stem Cells 31:8–11

    Article  CAS  PubMed  Google Scholar 

  • Hara K, Nakagawa T, Enomoto H et al (2014) Mouse spermatogenic stem cells continually interconvert between equipotent singly isolated and syncytial states. Cell Stem Cell 14:658–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Z, Jiang J, Hofmann MC et al (2007) Gfra1 silencing in mouse spermatogonial stem cells results in their differentiation via the inactivation of RET tyrosine kinase. Biol Reprod 77:723–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Z, Jiang J, Kokkinaki M et al (2008) Gdnf upregulates c-Fos transcription via the Ras/Erk1/2 pathway to promote mouse spermatogonial stem cell proliferation. Stem Cells 26:266–278

    Article  CAS  PubMed  Google Scholar 

  • Heller CG, Moore DJ, Paulsen CA (1961) Suppression of spermatogenesis and chronic toxicity in men by a new series of bis(dichloroacetyl) diamines. Toxicol Appl Pharmacol 3:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hermann BP, Sukhwani M, Lin CC et al (2007) Characterization, cryopreservation and ablation of spermatogonial stem cells In adult rhesus macaques. Stem Cells 25:2330–2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermann BP, Sukhwani M, Simorangkir DR et al (2009) Molecular dissection of the male germ cell lineage identifies putative spermatogonial stem cells in rhesus macaques. Hum Reprod 24:1704–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermann BP, Sukhwani M, Hansel MC, Orwig KE (2010) Spermatogonial stem cells in higher primates: are there differences to those in rodents? Reproduction 139:479–493

    Article  CAS  PubMed  Google Scholar 

  • Hermann BP, Sukhwani M, Salati J et al (2011) Separating spermatogonia from cancer cells in contaminated prepubertal primate testis cell suspensions. Hum Reprod 26:3222–3231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermann BP, Mutoji KN, Velte EK et al (2015) Transcriptional and Translational Heterogeneity among Neonatal Mouse Spermatogonia. Biol Reprod 92:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hilscher B, Hilscher W, Bulthoff-Ohnolz B et al (1974) Kinetics of gametogenesis. I. Comparative histological and autoradiographic studies of oocytes and transitional prospermatogonia during oogenesis and prespermatogenesis. Cell Tissue Res 154:443–470

    Article  CAS  PubMed  Google Scholar 

  • Hobbs RM, Seandel M, Falciatori I et al (2010) Plzf regulates germline progenitor self-renewal by opposing mTORC1. Cell 142:468–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hobbs RM, Fagoonee S, Papa A et al (2012) Functional antagonism between Sall4 and Plzf defines germline progenitors. Cell Stem Cell 10:284–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogarth CA, Arnold S, Kent T et al (2015a) Processive pulses of retinoic acid propel asynchronous and continuous murine sperm production. Biol Reprod 92:37

    Article  PubMed  CAS  Google Scholar 

  • Hogarth CA, Evans E, Onken J et al (2015b) CYP26 enzymes are necessary within the postnatal seminiferous epithelium for normal murine spermatogenesis. Biol Reprod 93:19

    Article  PubMed  CAS  Google Scholar 

  • Hu YC, de Rooij DG, Page DC (2013) Tumor suppressor gene Rb is required for self-renewal of spermatogonial stem cells in mice. Proc Natl Acad Sci U S A 110:12685–12690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huckins C (1971a) Cell cycle properties of differentiating spermatogonia in adult Sprague-Dawley rats. Cell Tissue Kinet 4:139–154

    CAS  PubMed  Google Scholar 

  • Huckins C (1971b) The spermatogonial stem cell population in adult rats. I. Their morphology, proliferation and maturation. Anat Rec 169:533–557

    Article  CAS  PubMed  Google Scholar 

  • Huckins C (1971c) The spermatogonial stem cell population in adult rats. II. A radioautographic analysis of their cell cycle properties. Cell Tissue Kinet 4:313–334

    CAS  PubMed  Google Scholar 

  • Huckins C, Oakberg EF (1978) Morphological and quantitative analysis of spermatogonia in mouse testes using whole mounted seminiferous tubules, I. The normal testes. Anat Rec 192:519–528

    Article  CAS  PubMed  Google Scholar 

  • Ikami K, Tokue M, Sugimoto R et al (2015) Hierarchical differentiation competence in response to retinoic acid ensures stem cell maintenance during mouse spermatogenesis. Development 142:1582–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii K, Kanatsu-Shinohara M, Toyokuni S et al (2012) FGF2 mediates mouse spermatogonial stem cell self-renewal via upregulation of Etv5 and Bcl6b through MAP2K1 activation. Development 139:1734–1743

    Article  CAS  PubMed  Google Scholar 

  • Izadyar F, Wong J, Maki C et al (2011) Identification and characterization of repopulating spermatogonial stem cells from the adult human testis. Hum Reprod 26:1296–1306

    Article  PubMed  Google Scholar 

  • Jaenisch R, Young R (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132:567–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain S, Naughton CK, Yang M et al (2004) Mice expressing a dominant-negative Ret mutation phenocopy human Hirschsprung disease and delineate a direct role of Ret in spermatogenesis. Development 131:5503–5513

    Article  CAS  PubMed  Google Scholar 

  • Jijiwa M, Kawai K, Fukihara J et al (2008) GDNF-mediated signaling via RET tyrosine 1062 is essential for maintenance of spermatogonial stem cells. Genes Cells 13:365–374

    Article  CAS  PubMed  Google Scholar 

  • Johnston DS, Olivas E, DiCandeloro P et al (2011) Stage-specific changes in GDNF expression by rat Sertoli cells: a possible regulator of the replication and differentiation of stem spermatogonia. Biol Reprod 85:763–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Julaton VT, Reijo Pera RA (2011) NANOS3 function in human germ cell development. Hum Mol Genet 20:2238–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanatsu-Shinohara M, Toyokuni S, Shinohara T (2004) CD9 is a surface marker on mouse and rat male germline stem cells. Biol Reprod 70:70–75

    Article  CAS  PubMed  Google Scholar 

  • Kanatsu-Shinohara M, Muneto T, Lee J et al (2008) Long-term culture of male germline stem cells from hamster testes. Biol Reprod 78:611–617

    Article  CAS  PubMed  Google Scholar 

  • Kanatsu-Shinohara M, Takashima S, Ishii K et al (2011) Dynamic changes in EPCAM expression during spermatogonial stem cell differentiation in the mouse testis. PLoS One 6:e23663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanatsu-Shinohara M, Inoue K, Takashima S et al (2012a) Reconstitution of mouse spermatogonial stem cell niches in culture. Cell Stem Cell 11:567–578

    Article  CAS  PubMed  Google Scholar 

  • Kanatsu-Shinohara M, Morimoto H, Shinohara T (2012b) Enrichment of mouse spermatogonial stem cells by melanoma cell adhesion molecule expression. Biol Reprod 87:139

    Article  PubMed  CAS  Google Scholar 

  • Kanatsu-Shinohara M, Onoyama I, Nakayama KI et al (2014) Skp1-Cullin-F-box (SCF)-type ubiquitin ligase FBXW7 negatively regulates spermatogonial stem cell self-renewal. Proc Natl Acad Sci U S A 111:8826–8831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh-Semba R, Tsuzuki M, Miyazaki N et al (2007) Distribution and immunohistochemical localization of GDNF protein in selected neural and non-neural tissues of rats during development and changes in unilateral 6-hydroxydopamine lesions. Neurosci Res 59:277–287

    Article  CAS  PubMed  Google Scholar 

  • Kaucher AV, Oatley MJ, Oatley JM (2012) NEUROG3 is a critical downstream effector for STAT3-regulated differentiation of mammalian stem and progenitor spermatogonia. Biol Reprod 86:164, 1–11

    Article  PubMed  CAS  Google Scholar 

  • Kluin PM, de Rooij DG (1981) A comparison between the morphology and cell kinetics of gonocytes and adult type undifferentiated spermatogonia in the mouse. Int J Androl 4:475–493

    Article  CAS  PubMed  Google Scholar 

  • Koshimizu U, Watanabe D, Tajima Y et al (1992) Effects of W (c-kit) gene mutation on gametogenesis in male mice: agametic tubular segments in Wf/Wf testes. Development 114:861–867

    CAS  PubMed  Google Scholar 

  • Kubota H, Avarbock MR, Brinster RL (2003) Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci U S A 100:6487–6492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota H, Avarbock MR, Brinster RL (2004) Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 101:16489–16494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota H, Avarbock MR, Schmidt JA et al (2009) Spermatogonial stem cells derived from infertile Wv/Wv mice self-renew in vitro and generate progeny following transplantation. Biol Reprod 81:293–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota H, Wu X, Goodyear SM et al (2011) Glial cell line-derived neurotrophic factor and endothelial cells promote self-renewal of rabbit germ cells with spermatogonial stem cell properties. FASEB J 25:2604–2614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon J, Kikuchi T, Setsuie R et al (2003) Characterization of the testis in congenitally ubiquitin carboxy-terminal hydrolase-1 (Uch-L1) defective (gad) mice. Exp Anim 52:1–9

    Article  CAS  PubMed  Google Scholar 

  • Kwon J, Mochida K, Wang YL et al (2005) Ubiquitin C-terminal hydrolase L-1 is essential for the early apoptotic wave of germinal cells and for sperm quality control during spermatogenesis. Biol Reprod 73:29–35

    Article  CAS  PubMed  Google Scholar 

  • Leblond CP, Clermont Y (1952a) Definition of the stages of the cycle of the seminiferous epithelium in the rat. Ann N Y Acad Sci 55:548–573

    Article  CAS  PubMed  Google Scholar 

  • Leblond CP, Clermont Y (1952b) Spermiogenesis of rat, mouse, hamster and guinea pig as revealed by the periodic acid-fuchsin sulfurous acid technique. Am J Anat 90:167–215

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Kanatsu-Shinohara M, Inoue K et al (2007) Akt mediates self-renewal division of mouse spermatogonial stem cells. Development 134:1853–1859

    Article  CAS  PubMed  Google Scholar 

  • Leeson CR, Forman DE (1981) Postnatal development and differentiation of contractile cells within the rabbit testis. J Anat 132:491–511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li JY, English MA, Ball HJ et al (1997) Sequence-specific DNA binding and transcriptional regulation by the promyelocytic leukemia zinc finger protein. J Biol Chem 272:22447–22455

    Article  CAS  PubMed  Google Scholar 

  • Liao HF, Chen WS, Chen YH et al (2014) DNMT3L promotes quiescence in postnatal spermatogonial progenitor cells. Development 141:2402–2413

    Article  CAS  PubMed  Google Scholar 

  • Lolicato F, Marino R, Paronetto MP et al (2008) Potential role of Nanos3 in maintaining the undifferentiated spermatogonia population. Dev Biol 313:725–738

    Article  CAS  PubMed  Google Scholar 

  • Lovasco LA, Gustafson EA, Seymour KA et al (2015) TAF4b is required for mouse spermatogonial stem cell development. Stem Cells 33:1267–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovelace DL, Gao Z, Mutoji K et al. The regulatory repertoire of PLZF and SALL4 in undifferentiated spermatogonia. Development (in press)

    Google Scholar 

  • Lu N, Sargent KM, Clopton DT et al (2013) Loss of vascular endothelial growth factor A (VEGFA) isoforms in the testes of male mice causes subfertility, reduces sperm numbers, and alters expression of genes that regulate undifferentiated spermatogonia. Endocrinology 154:4790–4802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J, Megee S, Rathi R et al (2006) Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: application to enrichment and culture of porcine spermatogonia. Mol Reprod Dev 73:1531–1540

    Article  CAS  PubMed  Google Scholar 

  • Maekawa M, Kamimura K, Nagano T (1996) Peritubular myoid cells in the testis: their structure and function. Arch Histol Cytol 59:1–13

    Article  CAS  PubMed  Google Scholar 

  • Manova K, Bachvarova RF (1991) Expression of c-kit encoded at the W locus of mice in developing embryonic germ cells and presumptive melanoblasts. Dev Biol 146:312–324

    Article  CAS  PubMed  Google Scholar 

  • Matson CK, Murphy MW, Griswold MD et al (2010) The mammalian doublesex homolog DMRT1 is a transcriptional gatekeeper that controls the mitosis versus meiosis decision in male germ cells. Dev Cell 19:612–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarrey JR (2013) Toward a more precise and informative nomenclature describing fetal and neonatal male germ cells in rodents. Biol Reprod 89:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McLaren A (2003) Primordial germ cells in the mouse. Dev Biol 262:1–15

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Lindahl M, Hyvonen ME et al (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287:1489–1493

    Article  CAS  PubMed  Google Scholar 

  • Morales C, Griswold MD (1987) Retinol-induced stage synchronization in seminiferous tubules of the rat. Endocrinology 121:432–434

    Article  CAS  PubMed  Google Scholar 

  • Morimoto H, Kanatsu-Shinohara M, Takashima S et al (2009) Phenotypic plasticity of mouse spermatogonial stem cells. PLoS One 4:e7909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morimoto H, Iwata K, Ogonuki N et al (2013) ROS are required for mouse spermatogonial stem cell self-renewal. Cell Stem Cell 12:774–786

    Article  CAS  PubMed  Google Scholar 

  • Morimoto H, Kanatsu-Shinohara M, Shinohara T (2015) ROS-generating oxidase Nox3 regulates the self-renewal of mouse spermatogonial stem cells. Biol Reprod 92:147

    Article  PubMed  CAS  Google Scholar 

  • Morrow CM, Hostetler CE, Griswold MD et al (2007) ETV5 is required for continuous spermatogenesis in adult mice and may mediate blood testes barrier function and testicular immune privilege. Ann N Y Acad Sci 1120:144–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullaney BP, Skinner MK (1991) Growth factors as mediators of testicular cell-cell interactions. Baillieres Clin Endocrinol Metab 5:771–790

    Article  CAS  PubMed  Google Scholar 

  • Murphey P, McLean DJ, McMahan CA et al (2013) Enhanced genetic integrity in mouse germ cells. Biol Reprod 88:6

    Article  PubMed  CAS  Google Scholar 

  • Nagano MC (2003) Homing efficiency and proliferation kinetics of male germ line stem cells following transplantation in mice. Biol Reprod 69:701–707

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Nabeshima Y, Yoshida S (2007) Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev Cell 12:195–206

    Article  CAS  PubMed  Google Scholar 

  • Naughton CK, Jain S, Strickland AM et al (2006) Glial cell-line derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate. Biol Reprod 74:314–321

    Article  CAS  PubMed  Google Scholar 

  • Oakberg EF (1956) A description of spermiogenesis in the mouse and its use in analysis of the cycle of the seminiferous epithelium and germ cell renewal. Am J Anat 99:391–413

    Article  CAS  PubMed  Google Scholar 

  • Oakberg EF (1971) Spermatogonial stem-cell renewal in the mouse. Anat Rec 169:515–531

    Article  CAS  PubMed  Google Scholar 

  • Oatley JM, Brinster RL (2008) Regulation of spermatogonial stem cell self-renewal in mammals. Annu Rev Cell Dev Biol 24:263–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oatley JM, Brinster RL (2012) The germline stem cell niche unit in mammalian testes. Physiol Rev 92:577–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oatley JM, Avarbock MR, Telaranta AI et al (2006) Identifying genes important for spermatogonial stem cell self-renewal and survival. Proc Natl Acad Sci U S A 103:9524–9529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oatley JM, Avarbock MR, Brinster RL (2007) Glial cell line-derived neurotrophic factor regulation of genes essential for self-renewal of mouse spermatogonial stem cells is dependent on Src family kinase signaling. J Biol Chem 282:25842–25851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oatley JM, Oatley MJ, Avarbock MR et al (2009) Colony stimulating factor 1 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal. Development 136:1191–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oatley MJ, Kaucher AV, Racicot KE et al (2011) Inhibitor of DNA binding 4 is expressed selectively by single spermatogonia in the male germline and regulates the self-renewal of spermatogonial stem cells in mice. Biol Reprod 85:347–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta H, Yomogida K, Dohmae K et al (2000) Regulation of proliferation and differentiation in spermatogonial stem cells: the role of c-kit and its ligand SCF. Development 127:2125–2131

    CAS  PubMed  Google Scholar 

  • Ohta H, Tohda A, Nishimune Y (2003) Proliferation and differentiation of spermatogonial stem cells in the w/wv mutant mouse testis. Biol Reprod 69:1815–1821

    Article  CAS  PubMed  Google Scholar 

  • Orwig KE, Ryu BY, Master SR et al (2008) Genes involved in post-transcriptional regulation are overrepresented in stem/progenitor spermatogonia of cryptorchid mouse testes. Stem Cells 26:927–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Shaughnessy PJ (2014) Hormonal control of germ cell development and spermatogenesis. Semin Cell Dev Biol 29:55–65

    Article  PubMed  CAS  Google Scholar 

  • Parker N, Falk H, Singh D et al (2014) Responses to glial cell line-derived neurotrophic factor change in mice as spermatogonial stem cells form progenitor spermatogonia which replicate and give rise to more differentiated progeny. Biol Reprod 91:92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perey B, Clermont Y, Leblond CP (1961) The wave of the seminiferous epithelium of the rat. Am J Anat 108:47–77

    Article  Google Scholar 

  • Phillips BT, Gassei K, Orwig KE (2010) Spermatogonial stem cell regulation and spermatogenesis. Philos Trans R Soc Lond B Biol Sci 365:1663–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potten CS (1992) Cell lineages. In: McGee JO, Isaacson PG, Wright NA (eds) Oxford textbook of pathology. Oxford University Press, Oxford, pp 43–52

    Google Scholar 

  • Puszyk W, Down T, Grimwade D et al (2013) The epigenetic regulator PLZF represses L1 retrotransposition in germ and progenitor cells. EMBO J 32:1941–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raverot G, Weiss J, Park SY et al (2005) Sox3 expression in undifferentiated spermatogonia is required for the progression of spermatogenesis. Dev Biol 283:215–225

    Article  CAS  PubMed  Google Scholar 

  • Reding SC, Stepnoski AL, Cloninger EW et al (2010) THY1 is a conserved marker of undifferentiated spermatogonia in the pre-pubertal bull testis. Reproduction 139:893–903

    Article  CAS  PubMed  Google Scholar 

  • Rohozinski J, Bishop CE (2004) The mouse juvenile spermatogonial depletion (jsd) phenotype is due to a mutation in the X-derived retrogene, mUtp14b. Proc Natl Acad Sci U S A 101:11695–11700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roosen-Runge EC, Giesel LO Jr (1950) Quantitative studies on spermatogenesis in the albino rat. Am J Anat 87:1–30

    Article  CAS  PubMed  Google Scholar 

  • Russell L (1977) Desmosome-like junctions between Sertoli and germ cells in the rat testis. Am J Anat 148:301–312

    Article  CAS  PubMed  Google Scholar 

  • Russell LD, Ettlin RA, Sinha-Hikim AP, Clegg ED (1990) Histological and histopathological evaluation of the testis. Cache River, Clearwater, FL

    Google Scholar 

  • Ryu BY, Kubota H, Avarbock MR et al (2005) Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat. Proc Natl Acad Sci U S A 102:14302–14307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sada A, Suzuki A, Suzuki H et al (2009) The RNA-binding protein NANOS2 is required to maintain murine spermatogonial stem cells. Science 325:1394–1398

    Article  CAS  PubMed  Google Scholar 

  • Sakaki-Yumoto M, Kobayashi C, Sato A et al (2006) The murine homolog of SALL4, a causative gene in Okihiro syndrome, is essential for embryonic stem cell proliferation, and cooperates with Sall1 in anorectal, heart, brain and kidney development. Development 133:3005–3013

    Article  CAS  PubMed  Google Scholar 

  • Sargent KM, Clopton DT, Lu N et al (2016) VEGFA splicing: divergent isoforms regulate spermatogonial stem cell maintenance. Cell Tissue Res 363(1):31–45

    Article  CAS  PubMed  Google Scholar 

  • Savitt J, Singh D, Zhang C et al (2012) The in vivo response of stem and other undifferentiated spermatogonia to the reversible inhibition of glial cell line-derived neurotrophic factor signaling in the adult. Stem Cells 30:732–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlesser HN, Simon L, Hofmann MC et al (2008) Effects of ETV5 (ets variant gene 5) on testis and body growth, time course of spermatogonial stem cell loss, and fertility in mice. Biol Reprod 78:483–489

    Article  CAS  PubMed  Google Scholar 

  • Schrans-Stassen BH, van de Kant HJ, de Rooij DG et al (1999) Differential expression of c-kit in mouse undifferentiated and differentiating type A spermatogonia. Endocrinology 140:5894–5900

    Article  CAS  PubMed  Google Scholar 

  • Schrans-Stassen BH, Saunders PT, Cooke HJ et al (2001) Nature of the spermatogenic arrest in Dazl -/- mice. Biol Reprod 65:771–776

    Article  CAS  PubMed  Google Scholar 

  • Seaberg RM, van der Kooy D (2003) Stem and progenitor cells: the premature desertion of rigorous definitions. Trends Neurosci 26:125–131

    Article  CAS  PubMed  Google Scholar 

  • Seandel M, James D, Shmelkov SV et al (2007) Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature 449:346–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3:155–168

    Article  CAS  PubMed  Google Scholar 

  • Shinoda G, de Soysa TY, Seligson MT et al (2013) Lin28a regulates germ cell pool size and fertility. Stem Cells 31:1001–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinohara T, Avarbock MR, Brinster RL (1999) β1- and α6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 96:5504–5509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinohara T, Orwig KE, Avarbock MR et al (2000) Spermatogonial stem cell enrichment by multiparameter selection of mouse testis cells. Proc Natl Acad Sci U S A 97:8346–8351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder EM, Davis JC, Zhou Q et al (2011) Exposure to retinoic acid in the neonatal but not adult mouse results in synchronous spermatogenesis. Biol Reprod 84:886–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorrentino V, Giorgi M, Geremia R et al (1991) Expression of the c-kit proto-oncogene in the murine male germ cells. Oncogene 6:149–151

    CAS  PubMed  Google Scholar 

  • Suzuki A, Tsuda M, Saga Y (2007) Functional redundancy among Nanos proteins and a distinct role of Nanos2 during male germ cell development. Development 134:77–83

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Sada A, Yoshida S et al (2009) The heterogeneity of spermatogonia is revealed by their topology and expression of marker proteins including the germ cell-specific proteins Nanos2 and Nanos3. Dev Biol 336:222–231

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Ahn HW, Chu T et al (2012) SOHLH1 and SOHLH2 coordinate spermatogonial differentiation. Dev Biol 361:301–312

    Article  CAS  PubMed  Google Scholar 

  • Tadokoro Y, Yomogida K, Ohta H et al (2002) Homeostatic regulation of germinal stem cell proliferation by the GDNF/FSH pathway. Mech Dev 113:29–39

    Article  CAS  PubMed  Google Scholar 

  • Takashima S, Kanatsu-Shinohara M, Tanaka T et al (2011) Rac mediates mouse spermatogonial stem cell homing to germline niches by regulating transmigration through the blood-testis barrier. Cell Stem Cell 9:463–475

    Article  CAS  PubMed  Google Scholar 

  • Takashima S, Kanatsu-Shinohara M, Tanaka T et al (2015) Functional differences between GDNF-dependent and FGF2-dependent mouse spermatogonial stem cell self-renewal. Stem Cell Rep 4:489–502

    Article  CAS  Google Scholar 

  • Takubo K, Ohmura M, Azuma M et al (2008) Stem cell defects in ATM-deficient undifferentiated spermatogonia through DNA damage-induced cell-cycle arrest. Cell Stem Cell 2:170–182

    Article  CAS  PubMed  Google Scholar 

  • Tegelenbosch RAJ, de Rooij DG (1993) A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res 290:193–200

    Article  CAS  PubMed  Google Scholar 

  • Tokuda M, Kadokawa Y, Kurahashi H et al (2007) CDH1 is a specific marker for undifferentiated spermatogonia in mouse testes. Biol Reprod 76:130–141

    Article  CAS  PubMed  Google Scholar 

  • Toyoda S, Miyzaki T, Miyazaki S et al (2009) Sohlh2 affects differentiation of KIT positive oocytes and spermatogonia. Dev Biol 325:238–248

    Article  CAS  PubMed  Google Scholar 

  • Valli H, Sukhwani M, Dovey SL et al (2014) Fluorescence- and magnetic-activated cell sorting strategies to isolate and enrich human spermatogonial stem cells. Fertil Steril 102:566–580

    Article  PubMed  PubMed Central  Google Scholar 

  • Valli H, Phillips BT, Orwig KE, Gassei K, Nagano MC (2015) Spermatogonial stem cells and spermatogenesis. In: Plant TM, Zeleznik AJ (eds) Knobil and Neill’s physiology of reproduction, 4th edn. Academic, New York, pp 595–635

    Google Scholar 

  • van Bragt MP, Roepers-Gajadien HL, Korver CM et al (2008) Expression of the pluripotency marker UTF1 is restricted to a subpopulation of early A spermatogonia in rat testis. Reproduction 136:33–40

    Article  PubMed  CAS  Google Scholar 

  • Virtanen I, Kallajoki M, Narvanen O et al (1986) Peritubular myoid cells of human and rat testis are smooth muscle cells that contain desmin-type intermediate filaments. Anat Rec 215:10–20

    Article  CAS  PubMed  Google Scholar 

  • Walter CA, Intano GW, McCarrey JR et al (1998) Mutation frequency declines during spermatogenesis in young mice but increases in old mice. Proc Natl Acad Sci U S A 95:10015–10019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang PJ, McCarrey JR, Yang F et al (2001) An abundance of X-linked genes expressed in spermatogonia. Nat Genet 27:422–426

    Article  PubMed  CAS  Google Scholar 

  • Weber JE, Russell LD (1987) A study of intercellular bridges during spermatogenesis in the rat. Am J Anat 180:1–24

    Article  CAS  PubMed  Google Scholar 

  • Webster KE, O’Bryan MK, Fletcher S et al (2005) Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis. Proc Natl Acad Sci U S A 102:4068–4073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Oatley JM, Oatley MJ et al (2010) The POU domain transcription factor POU3F1 is an important intrinsic regulator of GDNF-induced survival and self-renewal of mouse spermatogonial stem cells. Biol Reprod 82:1103–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Goodyear SM, Tobias JW et al (2011) Spermatogonial stem cell self-renewal requires ETV5-mediated downstream activation of Brachyury in mice. Biol Reprod 85:1114–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang QE, Oatley JM (2014) Spermatogonial stem cell functions in physiological and pathological conditions. Curr Top Dev Biol 107:235–267

    Article  CAS  PubMed  Google Scholar 

  • Yang QE, Gwost I, Oatley MJ et al (2013a) Retinoblastoma protein (RB1) controls fate determination in stem cells and progenitors of the mouse male germline. Biol Reprod 89:113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang QE, Kim D, Kaucher A et al (2013b) CXCL12-CXCR4 signaling is required for the maintenance of mouse spermatogonial stem cells. J Cell Sci 126:1009–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang QE, Racicot KE, Kaucher AV et al (2013c) MicroRNAs 221 and 222 regulate the undifferentiated state in mammalian male germ cells. Development 140:280–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida S, Takakura A, Ohbo K et al (2004) Neurogenin3 delineates the earliest stages of spermatogenesis in the mouse testis. Dev Biol 269:447–458

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Sukeno M, Nakagawa T et al (2006) The first round of mouse spermatogenesis is a distinctive program that lacks the self-renewing spermatogonia stage. Development 133:1495–1505

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Nabeshima Y, Nakagawa T (2007a) Stem cell heterogeneity: actual and potential stem cell compartments in mouse spermatogenesis. Ann N Y Acad Sci 1120:47–58

    Article  PubMed  Google Scholar 

  • Yoshida S, Sukeno M, Nabeshima Y (2007b) A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 317:1722–1726

    Article  CAS  PubMed  Google Scholar 

  • Yoshinaga K, Nishikawa S, Ogawa M et al (1991) Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function. Development 113:689–699

    CAS  PubMed  Google Scholar 

  • Zhang L, Tang J, Haines CJ et al (2011) c-kit and its related genes in spermatogonial differentiation. Spermatogenesis 1:186–194

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao M, Rohozinski J, Sharmac M et al (2007) Utp14b: a unique retrogene within a gene that has acquired multiple promoters and a specific function in spermatogenesis. Dev Biol 304:848–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng K, Wu X, Kaestner KH et al (2009) The pluripotency factor LIN28 marks undifferentiated spermatogonia in mouse. BMC Dev Biol 9:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou Z, Shirakawa T, Ohbo K et al (2015) RNA binding protein Nanos2 organizes post-transcriptional buffering system to retain primitive state of mouse spermatogonial stem cells. Dev Cell 34:96–107

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian P. Hermann Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mecklenburg, J.M., Hermann, B.P. (2016). Mechanisms Regulating Spermatogonial Differentiation. In: Piprek, R. (eds) Molecular Mechanisms of Cell Differentiation in Gonad Development. Results and Problems in Cell Differentiation, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-319-31973-5_10

Download citation

Publish with us

Policies and ethics