Skip to main content

A Proposed Methodology for Setting the Finite Element Models Based on Healthy Human Intervertebral Lumbar Discs

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2016)

Abstract

The human intervertebral lumbar disc is a fibrocartilage structure that is located between the vertebrae of the spine. This structure consists of a nucleus pulposus, the annulus fibrosus and the cartilage endplate. The disc may be subjected to a complex combination of loads. The study of its mechanical properties and movement are used to evaluate the medical devices and implants. Some researchers have used the Finite Element Method (FEM) to model the disc and to study its biomechanics. Estimating the parameters to correctly define these models has the drawback that any small differences between the actual material and the simulation model based on FEM can be amplified enormously in the presence of nonlinearities. This paper sets out a fully automated method to determine the most appropriate material parameters to define the behavior of the human intervertebral lumbar disc models based on FEM. The methodology that is proposed is based on experimental data and the combined use of data mining techniques, Genetic Algorithms (GA) and the FEM. Firstly, based on standard tests (compression, axial rotation, shear, flexion, extension and lateral bending), three-dimensional parameterized Finite Element (FE) models were generated. Then, considering the parameters that define the proposed parameterized FE models, a Design of Experiment (DoE) was completed. For each of the standard tests, a regression technique based on Support Vector Machines (SVM) with different kernels was applied to model the stiffness and bulges of the intervertebral lumbar disc when the parameters of the FE models are changed. Finally, the best combination of parameters was achieved by applying evolutionary optimization techniques that are based on GA to the best, previously obtained regression models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belytschko, T., Kulak, R.F., Schultz, A.B., Galante, J.O.: Finite element stress analysis of an intervertebral disc. J. Biomech. 7, 276–285 (1974)

    Article  Google Scholar 

  2. Kulak, R.F., Belytschko, T.B., Schultz, A.B., Galante, J.O.: Nonlinear behavior of the human intervertebral disc under axial load. J. Biomech. 9(6), 377–386 (1976)

    Article  Google Scholar 

  3. Panjabi, M.M., Brand, R.A., White, A.A.: Mechanical properties of the human thoracic spine. J. Bone Joint Surg. Am. 58(5), 642–652 (1976)

    Google Scholar 

  4. Yang, K.H., King, A.I.: Mechanism of facet load transmission as a hypothesis for low-back pain. Spine 9(6), 557–565 (1984)

    Article  Google Scholar 

  5. Schmidt, H., Heuer, F., Simon, U., Kettler, A., Rohlmann, A., Claes, L., Wilke, H.J.: Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus. Clin. Biomech. 21(4), 337–344 (2006)

    Article  Google Scholar 

  6. Ezquerro, F., Vacas, F.G., Postigo, S., Prado, M., Simón, A.: Calibration of the finite element model of a lumbar functional spinal unit using an optimization technique based on differential evolution. Med. Eng. Phys. 33(1), 89–95 (2011)

    Article  Google Scholar 

  7. Fernandez, R., Okariz, A., Ibarretxe, J., Iturrondobeitia, M., Guraya, T.: Use of decision tree models based on evolutionary algorithms for the morphological classification of reinforcing nano-particle aggregates. Comput. Mater. Sci. 92, 102–113 (2014)

    Article  Google Scholar 

  8. Fernandez, R., Martinez de Pisón, F.J., Pernía, A.V., Lostado, R.: Predictive modelling in grape berry weight during maturation process: Comparison of data mining, statistical and artificial intelligence techniques. Span. J. Agric. Res. 9(4), 1156–1167 (2011)

    Article  Google Scholar 

  9. González, R.A., Lacroix, D.: Biomechanical Study of Intervertebral Disc Degeneration. Polytechnic University of Catalonia, Barcelona (2012)

    Google Scholar 

  10. Lu, Y.M., Hutton, W.C., Gharpuray, V.M.: Do bending, twisting and diurnal fluid change in the disc affect the pro-pensity to prolapse? A viscoelastic finite element model. Spine 21, 2570–2579 (1996)

    Article  Google Scholar 

  11. Martinez, J.B., Oloyede, V.O.A., Broom, N.D.: Biomechanics of load-bearing of the intervertebral disc: an experimental and finite element model. Med. Eng. Phys. 19(2), 145–156 (1997)

    Article  Google Scholar 

  12. Kim, H.J., Chun, H.J., Kang, K.T., Lee, H.M., Chang, B.S., Lee, C.K., Yeom, J.S.: Finite element analysis for comparison of Spinous process Osteotomies technique with conventional Laminectomy as lumbar decompression procedure. Yonsei Med. J. 56(1), 146–153 (2015)

    Article  Google Scholar 

  13. Dicko, A.H., Tong-Yette, N., Gilles, B., Faure, F., Palombi, O.: Construction and validation of a hybrid lumbar spine model for the fast evaluation of intradiscal pressure and mobility. Int. J. Med. Health Biomed. Bioeng. Pharm. Eng. WASET 9(2), 134–145 (2015)

    Google Scholar 

  14. Smit, T.H., Odgaard, A., Schneider, E.: Structure and function of vertebral trabecular bone. Spine 22(24), 2823–2833 (1997)

    Article  Google Scholar 

  15. Ibarz, E., Herrera, A., Más, Y., Rodríguez-Vela, J., Cegoñino, J., Puértolas, S., Gracia, L.: Development and kinematic verification of a finite element model for the lumbar spine: application to disc degeneration. Biomed. Res., Int (2012)

    Google Scholar 

  16. Baroud, G., Nemes, J., Heini, P., Steffen, T.: Load shift of the intervertebral disc after a vertebroplasty: a finite-element study. Eur. Spine J. 12(4), 421–426 (2003)

    Article  Google Scholar 

  17. Denozière, G., Ku, D.N.: Biomechanical comparison between fusion of two vertebrae and implantation of an artificial intervertebral disc. J. Biomech. 39(4), 766–775 (2006)

    Article  Google Scholar 

  18. Dietrich, M., Kedzior, K., Zagrajek, T.: A biomechanical model of the human spinal system. Proc. Inst. Mech. Eng. Part H-J. Eng. Med. 205(1), 19–26 (1991)

    Article  Google Scholar 

  19. Pitzen, T., Geisler, F.H., Matthis, D., Müller-Storz, H., Pederson, K., Steudel, W.I.: The influence of cancellous bone density on load sharing in human lumbar spine: a comparison between an intact and a surgically altered motion segment. Eur. Spine J. 10(1), 23–29 (2001)

    Article  Google Scholar 

  20. Rostedt, M., Ekström, L., Broman, H., Hansson, T.: Axial stiffness of human lumbar motion segments, force dependence. J. Biomech. 31(6), 503–509 (1998)

    Article  Google Scholar 

  21. Shirazi-Adl, S.A., Shrivastava, S.C., Ahmed, A.M.: Stress analysis of the lumbar disc-body unit in compression. A three-dimensional nonlinear finite element study. Spine 9(2), 120–134 (1984)

    Article  Google Scholar 

  22. Gardner-Morse, M.G., Stokes, I.A.: Structural behavior of human lumbar spinal motion segments. J. Biomech. 37(2), 205–212 (2004)

    Article  Google Scholar 

  23. Liu, Y.K., Ray, G.A.U.T.A.M., Hirsch, C.: The resistance of the lumbar spine to direct shear. Orthop. Clin. North Am. 6(1), 33 (1975)

    Google Scholar 

  24. Guan, Y., Yoganandan, N., Zhang, J., Pintar, F.A., Cusick, J.F., Wolfla, C.E., Maiman, D.J.: Validation of a clinical finite element model of the human lumbosacral spine. Med. Biol. Eng. Comput. 44(8), 633–641 (2006)

    Article  Google Scholar 

  25. Schultz, A.B., Warwick, D.N., Berkson, M.H., Nachemson, A.L.: Mechanical properties of human lumbar spine motion segments—Part I: responses in flexion, extension, lateral bending, and torsion. J. Biomech. Eng. 101(1), 46–52 (1979)

    Article  Google Scholar 

  26. Vapnik, V., Golowich, S.E., Smola, A.: Support vector method for function approximation, regression estimation, and signal processing. In: Mozer, M., Jordan, M., Petsche, T. (eds.) Advances in Neural Information Processing Systems, pp. 281–287. MIT Press, Cambridge (1997)

    Google Scholar 

  27. Clarke, S.M., Griebsch, J.H., Simpson, T.W.: Analysis of support vector regression for approximation of complex engineering analyses. J. Mech. Des. Trans. ASME 127(6), 1077–1087 (2005)

    Article  Google Scholar 

  28. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  29. R Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2013). http://www.R-project.org/

  30. Kuhn, M., Contributions from Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B.., The R Core Team, Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L.: Caret: classification and Regression Training. R package version 6.0-41 (2015)

    Google Scholar 

  31. Montgomery, D.C.: Design and Analysis of Experiments. Wiley, New Jersey (2008)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thanks the University of the Basque Country UPV/EHU for its support through Project US15/18 OMETESA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Somovilla Gomez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Somovilla Gomez, F., Lostado Lorza, R., Fernandez Martinez, R., Corral Bobadilla, M., Escribano Garcia, R. (2016). A Proposed Methodology for Setting the Finite Element Models Based on Healthy Human Intervertebral Lumbar Discs. In: Martínez-Álvarez, F., Troncoso, A., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2016. Lecture Notes in Computer Science(), vol 9648. Springer, Cham. https://doi.org/10.1007/978-3-319-32034-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32034-2_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32033-5

  • Online ISBN: 978-3-319-32034-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics