Skip to main content

Abstract

Phosphorus the macronutrient, a component of nucleic acid and helpful for grain developmental phases (reproductive growth) of crops. It is also component of energy carriers like ATP, ADP, NADPH and FADPH which provide energy for different physiological processes. Phosphorous plays an important role in the growth, development and yield of crops. However, P causes some environmental problems like eutrophication. The importance of the element necessitate its study through modeling and distribution under changing climate. Since P is present as organic and inorganic form but their fate is different in soils. The inorganic P accounts for 35–70 % while organic form of P accounts for 30–65 % of the total P but it is dominantly available as stabilized forms like diesters. The availability of this P depends upon mineralization processes by soil biota which has dependency upon soil moisture, temperature, physiochemical properties and soil pH. However, the transformation of organic p has strong influence on the availability of P in soil. Therefore, availability of P to crop is extremely complex and its needs to be evaluated using modeling approaches. The Phosphorus Use Efficiency (PUE) for crops might be increased by understanding P-dynamics which may be done by models. The understanding of P dynamics will help to optimized balance use of P. By monitoring P for longer period of time might increase P status of soil. The use of computer models will help to modify fertilizer application which can reduce use of P but will increase PUE. The effects of high temperature, elevated CO2 and drought on the availability of phosphorous, PUE and its dynamics could be modeled using dynamics models like APSIM, AEP or by using regression modeling approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine Tri-Phosphate

ADP:

Adenosine di-phosphate

NADP:

Nicotinamide adenine dinucleotide phosphate

FADP:

Falvin adenine dinucleotide phosphate

APSIM:

Agricultural Production System Simulator

AEP:

Agriculture Ecosystem model

PUE:

Phosphorus Use Efficiency

IPCC:

Intergovernmental Panel on Climate Change

NFDC:

National Fertilizer Development Centre

IFPRI:

International Food Policy Research Institute

DNA:

Deoxyribonucleic acid

RNA:

Ribonucleic acid

PAE:

P Acquisition Efficiency

References

  • Ahmed, M. 2011. Climatic resilience of wheat (Triticum aestivum) using simulation modeling in Pothwar. Ph.D., thesis, PMAS-Arid Agriculture University Rawalpindi Pakistan.

    Google Scholar 

  • Ahmed, N., M. Abid, K. Hussain, M. Akram, and M. Yousaf. 2003. Evaluation of nutrient status in rice growing areas of the Punjab. Asian Journal of Plant Science 2(5): 449–453.

    Article  Google Scholar 

  • Anonymous. 2012. Phosphorus for agriculture. www.voguelph.ca/scitale/knowledge/library/effects-of-rising-atmospheric-concentrations-of-carbon-13254108.

  • Beaton, J.D., and D.W.L. Read. 1965. Effects of temperature and moisture on phosphorous uptake from calcareous Saskatchewan soil treated with several pelleted sources of phosphorous. Soil Science Society of American Journal 27(1): 61–65.

    Article  Google Scholar 

  • Bertrand, I., R.E. Holloway, R.D. Armstrong, and M.J. Mclaughlin. 2003. Chemical characteristics of phosphorous in alkaline soils from southern Australia. Australian Journal of Agricultural Research 41: 61–76.

    CAS  Google Scholar 

  • Bock, B.R., and F.J. Sikora. 1990. Modified quadratic plateau model for describing plant response to fertilizer. Soil Science Society of American Journal 54: 1784–1789.

    Article  CAS  Google Scholar 

  • Cassell, E.A., J.M. Dorioz, R.L. Kort, J.P. Hoffmann, D.W. Meals, D. Kirschtel, and D.C. Braun. 1998. Modeling posphorus dynamics in ecosystems: Mass balance and dynamic simulation approaches. Journal of Environmental Quality 27: 293–298.

    Article  CAS  Google Scholar 

  • Condron, L.M., B.L. Turner, and B. J. Cade-Menun. 2005. Chemistry and dynamics of soil organic phosphorus. In ed. J.T. Sims, A.N. Sharpley. Phosphorus: Agriculture and the environment. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Inc., Madison, WI, pp. 87–121.

    Google Scholar 

  • Dijkstra, F.A., N.V. Breemen, A.G. Jongmans, G.R. Davies, and G.E. Likens. 2003. Calcium weathering in forested soils and the effect of different tree species. Biogeochemistry 62: 253–275.

    Article  CAS  Google Scholar 

  • Drake, B.G., M.A. Gonzalezmeler, and S.P. Long. 1997. More efficient plants: A consequence of rising atmospheric CO2? Annuals Revision of Plant Physiology and Plant Molecular Biology 48: 609–639.

    Article  CAS  Google Scholar 

  • Duan, Z., H. Xiao, Z. Dong, X. Li, and G. Wang. 2004. Combined effect of nitrogen–phosphorus–potassium fertilizers and water on spring wheat yield in an arid desert region. Communication in Soil Science and Plant Analysis 35(1–2): 161–175.

    Article  CAS  Google Scholar 

  • Ercoli, L., M. Mariotti, A. Masoni, and F. Massantini. 1995. Effect of temperature and phosphorous fertilization on phosphorous and nitrogen uptake by sorghum. Crop Science 36(2): 348–354.

    Article  Google Scholar 

  • Frigg, R., and S. Hartman. 2006. Models in science. The stanford encyclopedia of philosophy (Fall 2012 Edition), Edward N. Zalta (ed.), forthcoming. http://plato.stanford.edu/archives/fall2012/entries/models-science/.

  • Hartemink, A.E. 2003. Soil fertility decline in the tropics. Wageningen: CABI.

    Book  Google Scholar 

  • Hayes, J.E., A.E. Richardson, and R.J. Simpson. 1999. Phytase and acid phosphatase activities in extracts from roots of temperate pasture grass and legume seedlings. Australian Journal of Plant Physiology 26: 801–809.

    Article  CAS  Google Scholar 

  • Hinsinger, P. 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root induced chemical changes: A review. Plant and Soil 237: 173–195.

    Article  CAS  Google Scholar 

  • International Food Policy Research Institute (IFPRI). 2009. Climate change impact on agriculture and costs of adaptations. Food policy report.

    Google Scholar 

  • IPCC. 2007. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge/New York: Cambridge University Press.

    Google Scholar 

  • Khan, R., A.R. Gurmani, A.H. Gurmani, and M.S. Zia. 2007. Effect of phosphorous application on wheat and rice yield under wheat-rice system. Sarhad Journal of Agriculture 23(4): 851–856.

    Google Scholar 

  • Khan, F.N., M. Lukac, G. Turner, and D.L. Godbold. 2008. Elevated atmospheric CO2 changes phosphorus fractions in soils under a short rotation poplar plantation (EuroFACE). Soil Biology and Biochemistry 40: 1716–1723.

    Article  CAS  Google Scholar 

  • Kiniry, J.R., and A.J. Bockholt. 1998. Maize and sorghum simulation in diverse texas environment. Agronomy Journal 90: 682–687.

    Article  Google Scholar 

  • Kumar, R., and S. Chaeturvedi. 2009. Crop modeling: A tool for agricultural research. www.agropedia.iitk.ac.in/?q=content/crop-model.

  • Lagomarsino, A., M.C. Moscatelli, M.R. Hoosbeek, P. Deangelis, and S. Grego. 2008. Assessment of soil nitrogen and phosphorous availability under elevated CO2 and N-fertilization in a short rotation poplar plantation. Plant and Soil 308: 131–147.

    Article  CAS  Google Scholar 

  • Lynch, J. 2007. Roots of the second green revolution. Australian Journal of Botany 55: 493–512.

    Article  Google Scholar 

  • Lynch, J.P. 2011. Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops. Plant Physiology 156(3): 1041–1049.

    Article  CAS  Google Scholar 

  • Lynch, J.P., and K.M. Brown. 2011. Topsoil foraging- an architectural adaptation of plants to low phosphorus availability. Plant and Soil 237(2): 225–237.

    Article  Google Scholar 

  • Lynch, J.P., and M.D. Ho. 2005. Rhizoeconomics: Carbon costs of phosphorus acquisition. Plant and Soil 269: 45–56.

    Article  CAS  Google Scholar 

  • Ma, Z., D.G. Bielenberg, K.M. Brown, and J.P. Lynch. 2001a. Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant, Cell and Environment 24: 459–467.

    Article  CAS  Google Scholar 

  • Ma, Z., T.C. Walk, A. Marcus, and J.P. Lynch. 2001b. Morphological synergism in root hair length, density, initiation and geometry for phosphorus acquisition in Arabidopsis thaliana: A modeling approach. Plant and Soil 236: 221–235.

    Article  CAS  Google Scholar 

  • Manske, G.G.B., J.I. Ortiz-Monasterio, M. Vangrinkel, R. González, S. Rajaram, E. Molina, and P.L.G. Vlek. 2000. Traits associated with improved P-uptake efficiency in CIMMYT’s semi dwarf spring bread wheat grown on an acid Andisol in Mexico. Plant and Soil 221: 189–204.

    Article  CAS  Google Scholar 

  • Manske, G.G.B., J.I. Ortiz-Monasterio, M. Vanginkel, R.M. Gonzalez, R.A. Fischer, S. Rajaram, and P.L.G. Vlek. 2001. Importance of P uptake efficiency versus P utilization for wheat yield in acid and calcareous soils in Mexico. European Journal of Argonomy 14: 261–274.

    Article  CAS  Google Scholar 

  • Mccown, R.L., G.L. Hammer, J.N.G. Hargreaves, D.P. Holzworth, and D.M. Freebairn. 1996. APSIM: A novel software system for model development, model testing and simulation in agricultural systems research. Agricultural Systems 50: 255–271.

    Article  Google Scholar 

  • Mo, X., and K. Beven. 2004. Multi-objective parameter conditioning of three source wheat canopy model. Agriculture Forest Meteorology 122: 39–63.

    Article  Google Scholar 

  • Mollier, A., and S. Pellerin. 1999. Maize root system growth and development as influenced by phosphorus deficiency. Journal of Experimental Botany 50: 487–497.

    Article  CAS  Google Scholar 

  • Monteith, J. 1981. Climate variation and the growth of crops. Journal of Royal Meteorology Society 107: 749.

    Article  Google Scholar 

  • Murthy, V. 2002. Crop growth modeling and its applications in agricultural meteorology. Satellite remote sensing and GIS applications in agricultural meteorology, 235–261.

    Google Scholar 

  • NFDC. 2011. http://www.nfdc.gov.pk/public.html.

  • Ortega, R., D.G. Westfall, and G.A. Peterson. 1997. Variability of phosphorous over landscapes and dryland winter wheat yields. Better Crops 81(2): 24–27.

    Google Scholar 

  • Raupach, M.R., G. Marland, P. Ciais, C. Lequere, J.G. Canadell, G. Klepper, and C.B. Field. 2007. Global and regional drivers of accelerating CO2 emissions. Proceedings of the National Academy of Sciences USA 104: 10288–10293.

    Article  CAS  Google Scholar 

  • Rehm, G., M. Schmitt, J. Lamb, G. Randall, and L. Busman. 2011. Understanding phosphorous fertilizers, phosphorous in the agricultural environment. University of Minnesota. www.extension.umn/edu/distribution/cropsystem/dc6288.html-47K.

  • Rehman, O., A.M. Ranjha, S.M. Mehdi, and A.A. Khan. 2005. Phosphorous requirement of wheat using Modified Freundlich model in Sultanpur (Pakistan) soil series. International Journal of Agriculture and Biology 7(1): 74–78.

    Google Scholar 

  • Reid, J.B. 2002. Yield responses to nutrient supply across a wide range of conditions. 1. Model derivation. Field Crops Research 77: 161–171.

    Article  Google Scholar 

  • Rodriguez, D., W.G. Keltjens, and J. Goudriaan. 1998. Plant leaf area expansion and assimilate production in wheat (Triticum aestivum L.) growing under low phosphorous conditions. Plant and Soil 200: 227–240.

    Article  CAS  Google Scholar 

  • Romer, W., J. Augustin, and G. Schilling. 1988. The relationship between phosphate absorption and root length in nine wheat cultivars. Plant and Soil 11: 199–201.

    Article  Google Scholar 

  • Rosenzweig, C., and M.L. Parry. 1994. Potential impact of climate change on world food supply. Nature 367: 133–138.

    Article  Google Scholar 

  • Ryan, P.R., E. Delhaize, and D.L. Jones. 2001. Function and mechanism of organic anion exudation from plant roots. Annuals Revision Plant Physiology and Plant Molecular Biology 52: 527–560.

    Article  CAS  Google Scholar 

  • Sardans, J., and J. Penuelas. 2004. Increasing drought decrease phosphorous availability in an evergreen Mediterranean forest. Plant and Soil Journal 267(1–2): 367–377.

    Article  CAS  Google Scholar 

  • Schjorring, J.K., and N.E. Nielsen. 1987. Root length and phosphorus uptake by four barley cultivars grown under moderate deficiency of phosphorus in field experiments. Journal of Plant Nutrition 10: 1289–1295.

    Article  Google Scholar 

  • Sharpley, A.N., J.L. Weld, D.B. Beegle, P.J.A. Kleiman, W.J. Gburek, P.A. Moore Jr., and G. Mullins. 2003. Development of phosphorus indices for nutrient management planning strategies in the United States. Journal of Soil and Water Conservation 58: 137–152.

    Google Scholar 

  • Shen, J., L. Yuan, J. Zhang, H. Li, Z. Bai, X. Chen, W. Zhang, and F. Zhang. 2011. Phosphorus dynamics: From soil to plant. Plant Physiology 156(3): 997–1005.

    Article  CAS  Google Scholar 

  • Smith, S.E., and V. Gianinazzi-Pearson. 1988. Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annuals Revision Plant Physiology 39: 221–244.

    Article  CAS  Google Scholar 

  • Smith, S.E., and D.J. Read. 1997. Mycorrhizal symbiosis, 2nd ed. San Diego: Academic. ISBN 978-0-12-652840-4.

    Google Scholar 

  • Stockle, C.O., M. Donatelli, and R. Nelson. 2001. CropSyst, a cropping systems simulation model. European Journal of Agronomy 18: 289–307.

    Article  Google Scholar 

  • Swami, S., and M. Singh. 2008. Critical limits of phosphorous for durum wheat in normal and heavy metal polluted soils. Indian Journal of Agricultural Research 42(4): 252–259.

    Google Scholar 

  • Thygesen, L.G., B.J. Hidayat, K.S. Johansen, and C. Felby. 2011. Role of supramolecular cellulose structures in enzymatic hydrolysis of plant cell walls. Journal of Industrial Microbiology & Biotechnology 38: 975–983.

    Article  CAS  Google Scholar 

  • Tiessen, H. 2008. Phosphorus in the global environment. In The ecophysiology of plant-phosphorus interactions, ed. P.J. White and J.P. Hammond. Dordrecht: Springer.

    Google Scholar 

  • Tubiello, F.N., and G. Fischer. 2007. Reducing climate change impacts on agriculture: Global and regional effects of mitigation, 2000–2080. Technol Forecas and Soc Chan 74: 1030–1056.

    Article  Google Scholar 

  • Turner, L.B. 1985. Changes in the phosphorous contents of capsicum annum leaves during water stress. Journal of Plant Physiology 121: 429–439.

    Article  CAS  Google Scholar 

  • Turner, B.L., A.E. Richardson, and E.J. Mullaney. 2007. Inositol phosphates: Linking agriculture and the environment, 304. Wallingford: CAB International.

    Book  Google Scholar 

  • USDA, NRCS. 2012. http://soils.usda.gov/.

  • Van Keulen, H., and J. Wolf. 1986. Modelling of agricultural production: Weather, soils and crops, Simulation monographs. Wageningen: PUDOC.

    Google Scholar 

  • Webber, M.G. 1990. Forest soil respiration after cutting and burning in immature aspen ecosystems. Forest Ecology Management 31: 1–14.

    Article  Google Scholar 

  • Willcutts, J.F., A.R. Overman, G.J. Hochmuth, D.J. Cantliffe, and P. Soundy. 1998. A comparison of three mathematical models of response to applied nitrogen: A case study using lettuce. Horticulture Science 33(5): 833–836.

    Google Scholar 

  • Wolf, J., and M. Van Oijen. 2003. Model simulation of effects of changes in climate and atmospheric CO2 and O3 on tuber yield potential of potato (cv. Bintje) in the European Union. Agriculture Ecosystem and Environment 94: 141–157.

    Article  CAS  Google Scholar 

  • World Bank. 2004. World development indicators. Washington, DC: World Bank.

    Google Scholar 

  • Yan, X., H. Liao, A. Cao, W.J. Horst, M.K. Schenk, A. Bürkert, N. Claassen, H. Flessa, W.B. Frommer, H. Goldbach, H.W. Olfs, V. Römheld, B. Sattelmacher, U. Schmidhalter, S. Schubert, N. Wirén, and L. Wittenmayer. 2002. The role of root architecture in P acquisition efficiency of different root systems: A case study with common bean and rice Book title: Plant nutrition: Developments in plant and soil sciences. Dordrecht: Springer. ISBN 978-0-306-47624-2.

    Google Scholar 

  • Zamune, E., L.I. Picone, and H.E. Echeverria. 2005. Comparison of phosphorous fertilization diagnostic methods for wheat under no tillage. Soil Tillage Research 89: 70–77.

    Article  Google Scholar 

  • Zublena, J., J.C. Barker, and T. A. Carter. 1993. Poultry manure as fertilizer source. Soil facts. North Carolina cooperative extension service. www.soil.ncsu.edu/publications/soilfacts/AG-439-05/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waqas Ijaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ijaz, W., Ahmed, M., Fayyaz-ul-Hassan, Asim, M., Aslam, M. (2017). Models to Study Phosphorous Dynamics Under Changing Climate. In: Ahmed, M., Stockle, C. (eds) Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-32059-5_15

Download citation

Publish with us

Policies and ethics