Skip to main content

Continuous Flow Synthesis: A Short Perspective

  • Chapter
  • First Online:
Continuous-Flow Chemistry in the Research Laboratory
  • 1177 Accesses

Abstract

In the past few years, continuous flow processing has slowly started to find place in academic research. Considered more of an industrial value for large-scale synthesis in chemical industry, it took more than half a century for academia to slowly adopt this technology for small-scale laboratory synthesis. Although there are clear benefits, especially whenever working with hazardous intermediates, that have to be generated in situ, or rapid heat dissipation and efficient mixing are needed, the general use of continuous flow synthesis on a daily basis in the modern research laboratory remains controversial. Still, flow synthesis appears to be seen as a curiosity and merely an expert tool among the many other and more “traditional” synthesis techniques. As such, the plethora of recent examples found in the literature remains focused on exploring the capabilities of the available equipment for optimizing already established syntheses and rarely a novelty from a chemical point of view is found. The challenge of processing heterogeneous reactions and reagents, highly viscous or highly corrosives materials, as well as the required time and labor investment for developing a running flow process depict further hurdles. Nevertheless, and in many instances, the use of dedicated flow equipment has proven its value and can bring undisputable advantage for the synthetic chemist in the research laboratory—continuous flow hydrogenation, ozonolysis, or lithium exchange reactions are just some of these synthetic examples. Although continuous flow technology offers a technically unique way to perform synthetic reactions, the question of whether to use this technique for a chemical transformation should be taken by an experienced chemist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Selected Recent Books on Organic Synthesis Under Continuous Flow Conditions

  1. V. Hessel, S. Hardt, H. Löwe, Chemical Micro Process Engineering (Wiley-VCH, Weinhem, 2004)

    Book  Google Scholar 

  2. J. Yoshida, Flash Chemistry: Fast Organic Synthesis in Microsystems (Wiley-Blackwell, Chichester, 2008)

    Book  Google Scholar 

  3. T. Dietrich, Principles and Applications of Chemical Microreactors (Wiley, Hoboken, 2008)

    Google Scholar 

  4. T. Wirth (ed.), Microreactors in Organic Synthesis and Catalysis (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  5. V. Hessel, A. Renken, J.C. Schouten, J. Yoshida (eds.), Micro Process Engineering. A Comprehensive Handbook, vols. 1–3 (Wiley-VCH, Weinheim, 2009)

    Google Scholar 

  6. C. Wiles, P. Watts, Micro Reaction Technology in Organic Synthesis (CRC Press, Boca Raton, 2011)

    Google Scholar 

  7. W. Reschetilowski (ed.), Microreactors in Preparative Chemistry (Wiley-VCH, Weinheim, 2013)

    Google Scholar 

  8. T. Wirth (ed.), Microreactors in Organic Synthesis and Catalysis. Second, Completely Revised and Enlarged Edition (Wiley-VCH, Weinheim, 2013)

    Google Scholar 

  9. F. Darvas, G. Dorman, V. Hessel (eds.), Flow Chemistry, vols. 1-2 (De Gruyter GmbH, Berlin/Boston, 2014)

    Google Scholar 

  10. J. Yoshida, Basics of Flow Microreactor Synthesis (Springer, Tokyo, 2015)

    Book  Google Scholar 

  11. V. Hessel, D. Kralissh, N. Kockmann, Novel Process Windows—Innovative Gates to intensified and Sustainable Chemical Processes (Wiley-VCH, Weinheim, 2015)

    Google Scholar 

Selected Recent Reviews on Organic Synthesis Under Continuous Flow Conditions (2010–2015)

  1. C.G. Frost, L. Mutton, Green Chem. 12, 1687 (2010)

    Article  CAS  Google Scholar 

  2. T. Illg, P. Lob, V. Hessel, Bioorg. Med. Chem. 18, 3707 (2010)

    Article  CAS  Google Scholar 

  3. S.V. Ley, Tetrahedron 66, 6270 (2010)

    Article  CAS  Google Scholar 

  4. S. Marre, K.F. Jensen, Chem. Soc. Rev. 39, 1183 (2010)

    Article  CAS  Google Scholar 

  5. J.P. McMullen, K.F. Jensen, Annu. Rev. Anal. Chem. 3, 19 (2010)

    Article  CAS  Google Scholar 

  6. T. Razzaq, C.O. Kappe, Chem. Asian. J. 5, 1274 (2010)

    CAS  Google Scholar 

  7. F.E. Valera, M. Quaranta, A. Moran, J. Blacker, A. Armstrong, J.T. Cabral, D.G. Blackmond, Angew. Chem. Int. Ed. 49, 2478 (2010)

    Article  CAS  Google Scholar 

  8. D. Webb, T.F. Jamison, Chem. Sci. 1, 675 (2010)

    Article  CAS  Google Scholar 

  9. J. Yoshida, Chem. Rec. 10, 332 (2010)

    Article  CAS  Google Scholar 

  10. C. Wiles, P. Watts, Adv. Chem. Eng. 38, 103 (2010)

    Article  CAS  Google Scholar 

  11. A. Cukalovic, J.-C.M.R. Monbaliu, C. Stevens, Top. Heterocycl. Chem. 23, 161 (2010)

    Article  CAS  Google Scholar 

  12. T.N. Glasnov, C.O. Kappe, J. Heterocycl. Chem. 48, 11 (2011)

    Article  CAS  Google Scholar 

  13. R.L. Hartman, J.P. McMullen, K.F. Jensen, Angew. Chem. Int. Ed. 50, 7502 (2011)

    Article  CAS  Google Scholar 

  14. M. Rasheed, T. Wirth, Angew. Chem. Int. Ed. 50, 357 (2011)

    Article  CAS  Google Scholar 

  15. J. Wegner, S. Ceylan, A. Kirschning, Chem. Commun. 47, 4583 (2011)

    Article  CAS  Google Scholar 

  16. C. Wiles, P. Watts, Chem. Commun. 47, 6512 (2011)

    Article  CAS  Google Scholar 

  17. J. Yoshida, H. Kim, A. Nagaki, ChemSusChem 4, 331 (2011)

    Article  CAS  Google Scholar 

  18. T.N. Glasnov, C.O. Kappe, Chem. Eur. J. 17, 11956 (2011)

    Article  CAS  Google Scholar 

  19. M. Irfan, T.N. Glasnov, C.O. Kappe, ChemSusChem 4, 300 (2011)

    Article  CAS  Google Scholar 

  20. T. Nöel, S.L. Buchwald, Chem. Soc. Rev. 40, 5050 (2011)

    Article  Google Scholar 

  21. J.W. Tucker, Y. Zhang, T.F. Jamison, C.R.J. Stephenson, Angew. Chem. Int. Ed. 51, 4144 (2012)

    Article  CAS  Google Scholar 

  22. A. Kirschning, L. Kupracz, J. Hartwig, Chem. Lett. 41, 562 (2012)

    Article  CAS  Google Scholar 

  23. J. Wegner, S. Ceylan, A. Kirschning, Adv. Synth. Catal. 354, 17 (2012)

    Article  CAS  Google Scholar 

  24. C. Wiles, P. Watts, Green Chem. 14, 38 (2012)

    Article  CAS  Google Scholar 

  25. L. Malet-Sanz, F. Susanne, J. Med. Chem. 55, 4062 (2012)

    Article  CAS  Google Scholar 

  26. M. Oelgemoeller, Chem. Eng. Technol. 35, 1144 (2012)

    Article  Google Scholar 

  27. T. Chinnusamy, S. Yudha, S.M. Hager, P. Kreitmeier, O. Reiser, ChemSusChem 5, 247 (2012)

    Article  CAS  Google Scholar 

  28. C.B. McPake, G. Sandford, Org. Process Res. Dev. 16, 844 (2012)

    Article  CAS  Google Scholar 

  29. T. Tsubogo, T. Ishiwata, S. Kobayashi, Angew. Chem. Int. Ed. 52, 6590 (2013)

    Article  CAS  Google Scholar 

  30. T. Nöel, V. Hessel, ChemSusChem 6, 405 (2013)

    Article  Google Scholar 

  31. I.R. Baxendale, J. Chem. Technol. Biotechnol. 88, 519 (2013)

    Article  CAS  Google Scholar 

  32. D.T. McQuade, P.H. Seeberger, J. Org. Chem. 78, 6384 (2013)

    Article  CAS  Google Scholar 

  33. J.C. Pastre, D.L. Browne, S.V. Ley, Chem. Soc. Rev. 42, 8849 (2013)

    Article  CAS  Google Scholar 

  34. J. Yoshida, A. Nagaki, D. Yamada, Drug Discov. Today Technol. 10, e53 (2013)

    Article  Google Scholar 

  35. J. Yoshida, Y. Takahashi, A. Nagaki, Chem. Commun. 49, 9896 (2013)

    Article  CAS  Google Scholar 

  36. V. Hessel, D. Kralish, N. Kockmann, T. Nöel, Q. Wang, ChemSusChem 6, 746 (2013)

    Article  CAS  Google Scholar 

  37. S.G. Newman, K.F. Jensen, Green Chem. 15, 1456 (2013)

    Article  CAS  Google Scholar 

  38. A. Puglisis, M. Benaglia, V. Chiroli, Green Chem. 15, 1790 (2013)

    Article  Google Scholar 

  39. T. Rodrigues, P. Schneider, G. Schneider, Angew. Chem. Int. Ed. 53, 5750 (2014)

    Article  CAS  Google Scholar 

  40. K.S. Elvira, X. Casadevall i Solvas, R.C.R. Wootton, A. J. deMello, Nat. Chem. 5, 905 (2013)

    Google Scholar 

  41. T. Fukuyama, T. Totoki, I. Ryu, Green Chem. 16, 2042 (2014)

    Article  CAS  Google Scholar 

  42. Y. Su, N.J.W. Straathof, V. Hessel, T. Nöel, Chem. Eur. J. 20, 10562 (2014)

    Article  CAS  Google Scholar 

  43. C. Wiles, P. Watts, Green Chem. 16, 55 (2014)

    Article  CAS  Google Scholar 

  44. T. Fukuyama, T. Totoki, I. Ryu, Green Chem. 16, 2042 (2014)

    Article  CAS  Google Scholar 

  45. L. Vaccaro, D. Lanari, A. Marrocchi, G. Strappaveccia, Green Chem. 16, 3680 (2014)

    Article  CAS  Google Scholar 

  46. S. Fuse, Y. Mifune, N. Tanabe, T. Takahashi, Synlett 25, 2087 (2014)

    Article  CAS  Google Scholar 

  47. K. Gilmore, P. Seeberger, Chem. Rec. 14, 410 (2014)

    Article  CAS  Google Scholar 

  48. K. Hargrove, G. Jones, Curr. Radiopharm. 7, 36 (2014)

    Article  CAS  Google Scholar 

  49. B. Gutmann, D. Cantillo, C.O. Kappe, Angew. Chem. Int. Ed. 54, 6688 (2015)

    Article  CAS  Google Scholar 

  50. S.V. Ley, D.E. Fitzpatrick, R.M. Myers, C. Battilocchio, R.J. Ingham, Angew. Chem. Int. Ed. 54, 10122 (2015)

    Article  CAS  Google Scholar 

  51. M. Baumann, I.R. Baxendale, Beilstein J. Org. Chem. 11, 1194 (2015)

    Article  CAS  Google Scholar 

  52. J. Bao, G.K. Tranmer, Chem. Commun. 51, 3037 (2015)

    Article  CAS  Google Scholar 

  53. F.G. Finelli, L.S.M. Miranda, R.O.M.A. de Souza, Chem. Commun. 51, 3708 (2015)

    Article  CAS  Google Scholar 

  54. B.J. Deadman, S.G. Collins, A.R. Maguire, Chem. Eur. J. 21, 2298 (2015)

    Article  CAS  Google Scholar 

  55. S.T.R. Müller, T. Wirth, ChemSusChem 8, 245 (2015)

    Article  Google Scholar 

  56. P.J. Cossar, L. Hizartzidis, M.I. Simone, A. McCluskey, C.P. Gordon, Org. Biomol. Chem. 13, 7119 (2015)

    Article  CAS  Google Scholar 

  57. H.P.L. Gemoets, Y. Su, M. Shang, V. Hessel, R. Luque, T. Nöel, Chem. Soc. Rev. 45, 83 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Glasnov, T. (2016). Continuous Flow Synthesis: A Short Perspective. In: Continuous-Flow Chemistry in the Research Laboratory. Springer, Cham. https://doi.org/10.1007/978-3-319-32196-7_1

Download citation

Publish with us

Policies and ethics