Skip to main content

Functional Characterization of a Chitinase Class III (CgCHI3) and a Glutathione S-Transferase (CgGST) Involved in Casuarina glaucaFrankia Symbiosis

  • Conference paper
  • First Online:
Biological Nitrogen Fixation and Beneficial Plant-Microbe Interaction

Abstract

Actinorhizal plants are key elements of natural ecosystems. Besides their high adaptability to extreme harsh environments, most actinorhizal plants have the capacity to obtain high levels of nitrogen due to their ability to establish symbiosis at the root level with nitrogen-fixing bacteria of the genus Frankia. Symbiosis is an ontogenic process that requires a highly coordinated sequence of events. One of such mechanisms is the induction of defense-related genes, whose main role during the symbiotic interaction remains to be elucidated. In this paper, we discuss the putative function of two defense-related proteins involved in the actinorhizal symbiosis established between Casuarina glauca and Frankia, namely a class III chitinase (CgCHI3) and a glutathione S-transferase (CgGST).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An CS, Kim HB, Lee SH et al (2005) Gene expression in root nodules of Elaeagnus umbellata. In: Wang YP, Lin M, Tian ZX, Newton WE (eds) Biological nitrogen fixation, sustainable agriculture and the environment, vol 41. Springer, Dordrecht, pp 207–208

    Chapter  Google Scholar 

  • Andrade IMCGA (2014) Functional characterization of a chitinase class III (CgCHI3) and a glutathione S-transferase (CgGST) involved in Casuarina glauca-Frankia symbiosis. PhD thesis, Universidade Nova de Lisboa

    Google Scholar 

  • Becana M, Matamoros MA, Udvardi M et al (2010) Recent insights into antioxidant defenses of legume root nodules. New Phytol 188:960–976

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya D, Nagpure A, Gupta RK (2007) Bacterial chitinases: properties and potential. Crit Rev Biotechnol 27:21–28

    Article  CAS  PubMed  Google Scholar 

  • Board PG, Coggan M, Chelvanayagam G et al (2000) Identification, characterization and crystal structure of the omega class of glutathione transferases. J Biol Chem 275:24798–24806

    Article  CAS  PubMed  Google Scholar 

  • Bokma E, Rozeboom HJ, Sibbald M et al (2002) Expression and characterization of active site mutants of hevamine, a chitinase from the rubber tree Hevea brasiliensis. Eur J Biochem 269:893–901

    Article  CAS  PubMed  Google Scholar 

  • Boller T (1987) Hydrolytic enzymes in plant disease resistance. In: Kosuge T, Nester EW (eds) Plant-microbe interactions, vol 2. Macmillan, New York, pp 385–413

    Google Scholar 

  • Carstens M, Vivier MA, Pretorius IS (2003) The Saccharomyces cerevisiae chitinase, encoded by the CTS1-2 gene, confers antifungal activity against Botrytis cinerea to transgenic tobacco. Transgenic Res 12(4):497–508

    Article  CAS  PubMed  Google Scholar 

  • Chi Y, Cheng Y, Vanitha J et al (2011) Expansion mechanisms and functional divergence of the glutathione S-transferase family in sorghum and other higher plants. DNA Res 18:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho HY, Kong KH (2007) Study on the biochemical characterization of herbicide detoxification enzyme, glutathione S-transferase. BioFactors 30:281–287

    Article  CAS  PubMed  Google Scholar 

  • Cummins I, Cole DJ, Edwards R (1999) A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. Plant J 18:285–292

    Article  CAS  PubMed  Google Scholar 

  • Dawson JO (1990) Interactions among actinorhizal and associated plant species. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic Press, New York, pp 299–316

    Google Scholar 

  • Dawson JO (2008) Ecology of actinorhizal plants In: Pawlowski K, Newton WE (eds) Nitrogen-fixing actinorhizal symbioses. Nitrogen fixation research: origins and progress. Springer, New York, pp 199–234

    Google Scholar 

  • De los Reyes BG, Taliaferro CM, Anderson MP et al (2001) Induced expression of the class II chitinase gene during cold acclimation and dehydration of bermudagrass (Cynodon sp.). Theor Appl Genet 103:297–306

    Article  CAS  Google Scholar 

  • Diem HG, Dommergues YR (1990) Current and potential uses and management of Casuarinaceae in the tropics. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic Press, New York, pp 317–342

    Google Scholar 

  • Dixon DP, Edwards R (2010) Glutathione transferases. Arabidopsis Book 8:e0131

    Google Scholar 

  • Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol (rev 3004.1-3004.10)

    Google Scholar 

  • Edwards R, Dixon DP, Walbot V (2000) Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci 5:193–198

    Article  CAS  PubMed  Google Scholar 

  • Fortunato A, Santos P, Graça I et al (2007) Isolation and characterization of cgchi3, a nodule-specific gene from Casuarina glauca encoding a class III chitinase. Physiol Plant 130:418–426

    Article  CAS  Google Scholar 

  • Fukamizo T (2000) Chitinolytic enzymes: catalysis, substrate binding, and their application. Curr Protein Pept Sci 1:105–124

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt LBD, Sachetto-Martins G, Contarini MG et al (1997) Arabidopsis thaliana class IV chitinase is early induced during the interaction with Xanthomonas campestris. FEBS Lett 419:69–75

    Article  Google Scholar 

  • Goormachtig S, Lievens S, van de Velde W et al (1998) Srchi13, a novel early nodulin from Sesbania rostrata, is related to acidic class III chitinases. Plant Cell 10:905–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham LS, Sticklen MB (1994) Plant chitinases. Can J Bot 72:1057–1083

    Article  CAS  Google Scholar 

  • Henrissat B (1991) Classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293:781–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hocher V, Alloisio N, Auguy F et al (2011) Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. Plant Physiol 156:700–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain M, Ghanashyam C, Bhattacharjee A (2010) Comprehensive expression analysis suggests overlapping and specific roles of rice glutathione S-transferase genes during development and stress responses. BMC Genomics 11:73

    Article  PubMed  PubMed Central  Google Scholar 

  • Jekbl PA, Hartmann JBH, Beintema JJ (1991) The primary structure of hevamine, an enzyme with lysozyme/chitinase activity from Hevea brasiliensis latex. Eur J Biochem 200:123–130

    Article  Google Scholar 

  • Jiang HW, Liu MJ, Chen IC et al (2010) A glutathione S-transferase regulated by light and hormones participates in the modulation of Arabidopsis seedling development. Plant Physiol 154:1646–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kampranis SC, Damianova R, Atallah M et al (2000) A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast. J Biol Chem 275:29207–29216

    Article  CAS  PubMed  Google Scholar 

  • Kasprzewska A (2003) Plant chitinases-regulation and functions. Cell Mol Biol Lett 8:809–824

    CAS  PubMed  Google Scholar 

  • Kim HB, An CS (2002) Differential expression patterns of an acidic chitinase and a basic chitinase in the root nodule of Elaeagnus umbellata. Mol Plant Microbe Interact 15:209–215

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Kim HB, Baek HE et al (2005) Constitutive expression of two endochitinases from root nodules of Elaeagnus umbellata confers resistance on transgenic Arabidopsis plants against the fungal pathogen Botrytis cinerea. J Plant Biol 48:39–46

    Article  CAS  Google Scholar 

  • Lan T, Yang ZL, Yang X et al (2009) Extensive functional diversification of the Populus glutathione S-transferase supergene family. Plant Cell 21:3749–3766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laplaze L, Gherbi H, Frutz T et al (1999) Flavan-containing cells delimit Frankia infected compartments in Casuarina glauca nodules. Plant Physiol 121:113–122. doi:10.1104/pp.121.1.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laplaze L, Gherbi H, Duhoux E et al (2002) Symbiotic and non-symbiotic expression of cgMT1, a metallothionein-like gene from the actinorhizal tree Casuarina glauca. Plant Mol Biol 49:81–92. doi:10.1023/A:1014415003714

    Article  CAS  PubMed  Google Scholar 

  • Lohar DP, Sharapova N, Endre G et al (2006) Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiol 140:221–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loyall L, Uchida K, Braun S et al (2000) Glutathione and a UV light-induced glutathione S-transferase are involved in signalling to chalcone synthase in cell cultures. Plant J 25:237–245

    Google Scholar 

  • Mauch F, Staehelin LA (1989) Functional implications of the subcellular localization of ethylene-induced chitinase and [beta]-1,3-glucanase in bean leaves. Plant Cell 1(4):447–457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meier BM, Shaw N, Slusarenko AJ (1993) Spatial and temporal accumulation of defense gene transcripts in bean (Phaseolus vulgaris) leaves in relation to bacteria-induced hypersensitive cell death. Mol Plant Microbe Interact 6:453–466

    Article  CAS  PubMed  Google Scholar 

  • Minchin FR, James EK, Becana M (2008) Oxygen diffusion, production of reactive oxygen and nitrogen species, and antioxidants in legume nodules. In: Dilworth MJ, James EK, Sprent JI, Newton WE (eds) Nitrogen-fixing symbioses. Springer, New York, pp 321–362

    Google Scholar 

  • Moons A (2003) Osgstu3 and osgstu4, encoding tau class glutathione S-transferases, are heavy metal and hypoxic stress-induced and differentially salt stress-responsive in rice roots. FEBS Lett 553:427–432

    Article  CAS  PubMed  Google Scholar 

  • Mueller LA, Goodman CD, Silady RA et al (2000) AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol 123:1561–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuhaus JM, Fritig B, Linthorst HJM et al (1996) A revised nomenclature for chitinase genes. Plant Mol Biol Rep 14:102–104

    Article  CAS  Google Scholar 

  • Oakley AJ (2005) Glutathione transferases: new functions. Curr Opin Struct Biol 15:716–723

    Article  CAS  PubMed  Google Scholar 

  • Obertello M, Wall L, Laplaze L et al (2007) Functional analysis of the metallothionein gene CgMT1 isolated from the actinorhizal tree Casuarina glauca. Mol Plant Microbe Interact 20:1231–1240. doi:10.1094/MPMI-20-10-123

    Article  CAS  PubMed  Google Scholar 

  • Peumans WJ, Proost P, Swennen RL et al (2002) The abundant class III chitinase homolog in young developing banana fruits behaves as a transient vegetative storage protein and most probably serves as an important supply of amino acids for the synthesis of ripening-associated proteins. Plant Physiol 130:1063–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramírez M, Graham MA, Lopez LB et al (2005) Sequencing and analysis of common bean ESTs. Building a foundation for functional genomics. Plant Physiol 137:1211–1227

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribeiro A, Graça I, Pawlowski K et al (2011) Actinorhizal plant defence-related genes in response to symbiotic Frankia. Funct Plant Biol 38:639–644

    Article  Google Scholar 

  • Salzer P, Bonanomi A, Beyer K et al (2000) Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation and pathogen infection. Mol Plant Microbe Interact 13:763–777

    Article  CAS  PubMed  Google Scholar 

  • Samac DA, Graham MA (2007) Recent advances in legume-microbe interactions: recognition, defense response, and symbiosis from a genomic perspective. Plant Physiol 144:582–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samac DA, Shah DM (1991) Developmental and pathogen-induced activation of the Arabidopsis acidic chitinase promoter. Plant Cell 3:1063–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos P, Fortunato A, Ribeiro A et al (2008) Chitinases in root nodules. Plant Biotechnol 25:299–307

    Article  CAS  Google Scholar 

  • Santos P, Fortunato A, Graca I et al (2010) Characterization of four defense-related genes up-regulated in root nodules of Casuarina glauca. Symbiosis 50:27–35

    Article  CAS  Google Scholar 

  • Singla B, Tyagi AK, Khurana JP et al (2007) Analysis of expression profile of selected genes expressed during auxin-induced somatic embryogenesis in leaf base system of wheat (Triticum aestivum) and their possible interactions. Plant Mol Biol 65:677–692

    Article  CAS  PubMed  Google Scholar 

  • Smith AP, Nourizadeh SD, Peer WA et al (2003) Arabidopsis AtGSTF2 is regulated by ethylene and auxin, and encodes a glutathione S-transferase that interacts with flavonoids. Plant J 36:433–442

    Article  CAS  PubMed  Google Scholar 

  • Soto MJ, Dominguez-Ferreras A, Pérez-Mendoza D et al (2009) Mutualism versus pathogenesis: the give-and-take in plant-bacteria interactions. Cell Microbiol 11:381–388

    Article  CAS  PubMed  Google Scholar 

  • Spaink HP (1995) The molecular basis of infection and nodulation by rhizobia: the ins and outs of sympathogenesis. Annu Rev Phytopathol 33:345–368

    Article  CAS  PubMed  Google Scholar 

  • Sprent JI (2007) Evolving ideas of legume evolution and diversity: a taxonomic perspective of the occurrence of nodulation. New Phytol 174:11–25. doi:10.1111/j.1469-8137.2007.02015.x

    Article  CAS  PubMed  Google Scholar 

  • Staehelin C, Schultze M, Kondorosi E et al (1995) Lipochitooligosaccharide nodulation signals from Rhizobium meliloti induce their rapid degradation by the host plant alfalfa. Plant Physiol 108:1607–1614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Staehelin C, Schultze M, Tokuyasu K et al (2000) N-deacetylation of Sinorhizobium meliloti Nod factors increases their stability in the Medicago sativa rhizosphere and decreases their biological activity. Mol Plant Microbe Interact 13:72–79

    Article  CAS  PubMed  Google Scholar 

  • Svistoonoff S, Laplaze L, Auguy F et al (2003) cg12 expression is specifically linked to infection of root hairs and cortical cells during Casuarina glauca and Allocasuarina verticillata actinorhizal nodule development. Mol Plant Microbe Interact 16:600–607. doi:10.1094/MPMI.2003.16.7.600

    Article  CAS  PubMed  Google Scholar 

  • Tavares F, Santos CL, Sellstedt A (2007) Reactive oxygen species in legume and actinorhizal nitrogen-fixing symbioses: the microsymbiont’s responses to an unfriendly reception. Physiol Plant 130:344–356

    Article  CAS  Google Scholar 

  • Vasse J, de Billy F, Truchet G (1993) Abortion of infection during the Rhizobium meliloti-alfalfa symbiotic interactions is accompanied by a hypersensitive reaction. Plant J 4:555–566

    Article  Google Scholar 

  • Wagner U, Edwards R, Dixon DP et al (2002) Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol Biol 49:515–532

    Article  CAS  PubMed  Google Scholar 

  • Wilce MC, Parker MW (1994) Structure and function of glutathione S-transferases. Biochim Biophys Acta 1205:1–18

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Ng TB (2005) A chitinase with antifungal activity from the mung bean. Protein Expr Purif 40:230–236

    Article  CAS  PubMed  Google Scholar 

  • Yeh S, Moffatt BA, Griffith M et al (2000) Chitinase genes responsive to cold encode antifreeze proteins in winter cereals. Plant Physiol 124:1251–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama R, Nishitani K (2004) Genomic basis for cell-wall diversity in plants. A comparative approach to gene families in rice and Arabidopsis. Plant Cell Physiol 45:1111–1121

    Article  CAS  PubMed  Google Scholar 

  • Yu XM, Griffith M (2001) Winter rye antifreeze activity increases in response to cold and drought, but not abscisic acid. Physiol Plant 112:78–86

    Article  CAS  PubMed  Google Scholar 

  • Zeng Q, Wang X (2005) Catalytic properties of glutathione-binding residues in a tau class glutathione transferase (PtGSTU1) from Pinus tabulaeformis. FEBS Lett 579:2657–2662

    Article  CAS  PubMed  Google Scholar 

  • Zeng QY, Lu H, Wang XR (2005) Molecular characterization of a glutathione transferase from Pinus tabulaeformis (Pinaceae). Biochimie 87:445–455

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Kays SJ, Schroeder BP et al (2002) Mutation of a chitinase-like gene causes ectopic deposition of lignin, aberrant cell shapes, and overproduction of ethylene. Plant Cell 14:165–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inês Graça .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Graça, I., Guilherme, M., Tavares, P., Pereira, A.S., Ribeiro-Barros, A.I. (2016). Functional Characterization of a Chitinase Class III (CgCHI3) and a Glutathione S-Transferase (CgGST) Involved in Casuarina glaucaFrankia Symbiosis. In: González-Andrés, F., James, E. (eds) Biological Nitrogen Fixation and Beneficial Plant-Microbe Interaction. Springer, Cham. https://doi.org/10.1007/978-3-319-32528-6_9

Download citation

Publish with us

Policies and ethics