Skip to main content

Memory Syndromes

  • Chapter
  • First Online:
Cognitive, Conative and Behavioral Neurology
  • 1315 Accesses

Abstract

The different types of memory and the related process of learning are all contained within expansive cerebral circuits. For example the recall of a particular event has elements of visual, acoustic, tactile, olfactory, and language-associated details. For memories to be made, there firstly needs to be adequate attention to allow registration of details, after which hippocampal processing occurs, with consolidation of information which is then relegated to storage in a particular area of the cortex. The prefrontal cortex is required for eventual retrieval, the right PFC for autobiographic details, and the left PFC for semantic information [1]. Clinical, cognitive neuroscience and psychological and neuropathological classifications exist for memory and the related disorders. These may be better understood by reviewing what is currently known about memory systems in evolution of animals, mammals, primates, and hominins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tulving E. Memory and consciousness. Can Pyschol. 1985;26:1–12.

    Article  Google Scholar 

  2. Allen TA, Fortin NJ. The evolution of episodic memory. Proc Natl Acad Sci U S A. 2013;110:10379–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Small SA, Schobel SA, Buxton RB, Witter MR, Barnes CA. A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci. 2011;12:585–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aggleton JP, Brown MW. Interleaving brain systems for episodic and recognition memory. Trends Cogn Sci. 2006;10:455–63.

    Article  PubMed  Google Scholar 

  5. Kopelman MD. Disorders of memory. Brain. 2002;125:2152–90.

    Article  PubMed  Google Scholar 

  6. Clayton NS, Bussey TJ, Dickinson A. Can animals recall the past and plan for the future? Nat Rev Neurosci. 2004;4(8):685–91.

    Article  CAS  Google Scholar 

  7. Jacobs LF. The role of social selection in the evolution of hippocampal specializations. In: Tommasi L, Petereson MA, Nadel L, editors. Cognitive biology. London: MIT Press; 2009.

    Google Scholar 

  8. Van Strien NM. Nat Rev Neurosci. 2009;10:272–82.

    Article  PubMed  CAS  Google Scholar 

  9. Bateson P, Gluckman P. Plasticity, robustness, development, and evolution. Cambridge: Cambridge Universit Press; 2011.

    Book  Google Scholar 

  10. Kemperman G, Chesler EJ, Lu L, Williams RW, Gage FH. Natural vcariation and genetic covariance in adult hippocampal neurogenesis. Proc Natl Acad Sci U S A. 2006;103:780–5.

    Google Scholar 

  11. Kemperman G. New neurons for survival of the fittest. Nat Neurosci Rev. 2012;13:727–36.

    Google Scholar 

  12. Rajah MN, D’Esposito M. Region-specific changes in prefrontal function with age: a review of PET and fMRI studies on working and episodic memory. Brain. 2005;128:1964–83.

    Article  PubMed  Google Scholar 

  13. Wynn T, Balter M. Did working memory spark creative culture? Science. 2010;328:160–3.

    Article  Google Scholar 

  14. Skoyles J. Med Hypotheses. 1997;48:499–501.

    Article  CAS  PubMed  Google Scholar 

  15. Petrides M. The mid-dorsolateral prefrontal-parietal network and the epoptic process. In: Stuss DT, Knight RT, editors. Principles of frontal lobe function. Oxford: Oxford University Press; 2012.

    Google Scholar 

  16. Medalla M, Barbas H. Diversity of laminar connections linking periarcuate and lateral intraparietal areas depends on cortical structure. Eur J Neurosci. 2006;23(1):161–79.

    Article  CAS  PubMed  Google Scholar 

  17. Petrides M. Dissociable roles of the mid dorsolateral prefrontal cortex and anterior inferotemporal cortex in visual working memory. J Neurosci. 2000;20:7496–503.

    CAS  PubMed  Google Scholar 

  18. Champod AS, Petrides M. Dissociation within the frontoparietal network in verbal working memory: a parametric functional magnetic resonance imaging study. J Neurosci. 2010;30:3849–56.

    Article  CAS  PubMed  Google Scholar 

  19. Champod AS, Petrides M. Dissociable roles of the posterior parietal and the prefrontal cortex in manipulation and monitoring process. Proc Natl Acad Sci U S A. 2007;104:14837–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Semendeferi K, Barger N, Schenker N. Brain reorganization in humans and apes. The human brain evolving. Gosport, IN: Stone Age Institute Press; 2010.

    Google Scholar 

  21. Read D, van der Leeuw S. Biology is only part of the story. Philos Trans R Soc B. 2008;363:1959–68.

    Article  Google Scholar 

  22. Wynn T, Coolidge FI. The implications of the working memory model for the evolution of modern cognition. Int J Evol Biol. 2011;2011:741357.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wynn T, Coolidge FL. The rise of Homo Sapiens. Oxford: Wiley Blackwell; 2009.

    Google Scholar 

  24. Kosslyn SM, Alpert NM, Thompson WL, Chabris CF, Rauch SL, Anderson AK. Identifying objects seen from different viewpoints. A PET investigation. Brain. 1994;117:1055–71.

    Article  PubMed  Google Scholar 

  25. LePort A, Mattfeld A, Dickinson-Anson H, Fallon J, Stark C, Kruggel F, et al. Behavioral and neuroanatomical investigation of highly superior autobiographical memory (HSAM). Neurobiol Learn Mem. 2012;98:78–92.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Parker ES, Cahill L, McGaugh JL. A case of unusual autobiographical remembering. Neurocase. 2006;12:35–49.

    Article  PubMed  Google Scholar 

  27. Ally B, Hussey E, Donahue M. A case of hyperthymesia: rethinking the role of the amygdala in autobiographical memory. Neurocase. 2013;19(2):1–16.

    Article  Google Scholar 

  28. Eichenbaum H, Yonelinas AP, Raganath C. The medial temporal lobe and recognition memory. Ann Rev Neurosci. 2007;30:123–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ, editors. Principles of neural science. 5th ed. New York, NY: McGraw Hill; 2013.

    Google Scholar 

  30. Eichenbaum H. Time cells in the hippocampus: a new dimension for mapping memories. Nat Rev Neurosci. 2014;15:732–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Conway MA, Anderson SJ, Larsen SF, Donnelly CM, McDaniel MA, McClelland AG, et al. The formation of flash bulb memories. Mem Cognit. 1994;22:326–43.

    Article  CAS  PubMed  Google Scholar 

  32. Wolk DA, Budson AE. Memory systems. Continuum. 2010;16:15–28.

    PubMed  Google Scholar 

  33. Fleming SM, Dolan RJ. The neural basis of metacognitive ability. Philos Trans R Soc B. 2012;367:1338–49. doi:10.1098/rstb.2011.0417.

    Article  Google Scholar 

  34. Pronin E. Perception and misperception of bias in human judgment. Trends Cogn Sci. 2007;11:37–43.

    Article  PubMed  Google Scholar 

  35. Wheeler MA, Stuss DT, Tulving E. Frontal lobe damage produces episodic memory impairment. J Int Neuropsychol Soc. 1995;1:525–36.

    Article  CAS  PubMed  Google Scholar 

  36. Grothe MJ, Schuster C, Bauer F, Heinsen H, Prudlo J, Teipel SJ. Atrophy of the cholinergic basal forebrain in dementia with Lewy bodies and Alzheimer's disease dementia. J Neurol. 2014;261(10):1939–48.

    Article  PubMed  Google Scholar 

  37. Buckner RL. Memory and executive function imaging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron. 2004;44:195–208.

    Article  CAS  PubMed  Google Scholar 

  38. Wagner AD, Shannon BJ, Kahn I, Buckner RL. Parietal lobe contributions to episodic memory retrieval. Trends Cogn Neurosci. 2005;9:445–53.

    Article  Google Scholar 

  39. Sili U, Kaya A, Mert A. HSV Encephalitis Study Group. Herpes simplex virus encephalitis: clinical manifestations, diagnosis and outcome in 106 adult patients. J Clin Virol. 2014;60(2):112–8.

    Article  PubMed  Google Scholar 

  40. Grydeland H, Walhovd KB, Westlye LT, Due-Tønnessen P, Ormaasen V, Sundseth Ø, et al. Amnesia following herpes simplex encephalitis: diffusion-tensor imaging uncovers reduced integrity of normal-appearing white matter. Radiology. 2010;257(3):774–81.

    Article  PubMed  Google Scholar 

  41. Gerwig M, Kastrup O, Wanke I, Diener HC. Adult post-infectious thalamic encephalitis: acute onset and benign course. Eur J Neurol. 2004;11(2):135–9.

    Article  CAS  PubMed  Google Scholar 

  42. Hodges JR. Transient global amnesia: clinical and neuropsychological aspects. London: WB Saunders; 1991.

    Google Scholar 

  43. Strupp M, Bruning R, Wu RH, Deimling M, Reiser M, Brandt T. Diffusion weighted MRI in transient global amnesia: elevated signal intensity in the left mesial temporal lobe in 7 of 10 patients. Ann Neurol. 1998;43:164–70.

    Article  CAS  PubMed  Google Scholar 

  44. Matsuda H, Higashi S, Tsuji S, Sumiya H, Miyauchi T, Hisada K, et al. High resolution TC-99 m HMPAO SPECT in a patient with transient global amnesia. Clin Nucl Med. 1993;18:46–9.

    Article  CAS  PubMed  Google Scholar 

  45. Heiss WD, Pawlik G, Holthoff V, Kessler J, Szelies B. PET correlates of normal and impaired memory functions [Review]. Cerebrovasc Brain Metab Rev. 1992;4:1–27.

    CAS  PubMed  Google Scholar 

  46. Baron JC, Petit-Taboue MC, Le Doze F, Desgranges B, Ravenel N, Marchal G. Right frontal cortex hypometabolism in transient global amnesia A PET study. Brain. 1994;117:545–52.

    Article  PubMed  Google Scholar 

  47. Gass A, Gaa J, Hirsch J, Schwartz A, Hennerici M. Lack of evidence of acute ischemic tissue changes in transient global amnesia on single shot echo planar diffusion weighted MRI. Stroke. 1999;30:2070–2.

    Article  CAS  PubMed  Google Scholar 

  48. Budson AE, Schlaug G, Briemberg HR. Perfusion and diffusion weighted magnetic resonance imaging in transient global amnesia. Neurology. 1999;53:239–40.

    Article  CAS  PubMed  Google Scholar 

  49. Thornton HB, Nel D, Thornton D, van Honk J, Baker GA, Stein DJ. The neuropsychiatry and neuropsychology of lipoid proteinosis. J Neuropsychiatry Clin Neurosci. 2008;20:86–92.

    Article  PubMed  Google Scholar 

  50. Hurlemann R, Wagner M, Hawellek B, Reich H, Pieperhoff P, Amunts K, et al. Amygdala control of emotion-induced forgetting and remembering: evidence from Urbach-Wiethe disease. Neuropsychologia. 2007;45(5):877–84.

    Article  PubMed  Google Scholar 

  51. Morgan B, Terburg D, Thornton HB, Stein DJ, van Honk J. Paradoxical facilitation of working memory after basolateral amygdala damage. PLoS One. 2012;7(6), e38116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lezak MD, Howieson DB, Bigler ED, Tranel D. Neuropsychological assessment. 5th ed. Oxford: Oxford University Press; 2012.

    Google Scholar 

  53. Mesulam M-M. Principles of behavioral and cognitive neurology. Oxford: Oxford University Press; 2000.

    Google Scholar 

  54. Weintraub S, Peavy GM, O'Connor M, Johnson NA, Acar D, Sweeney J, et al. Three words three shapes: a clinical test of memory. J Clin Exp Neuropsychol. 2000;22(2):267–78.

    Article  CAS  PubMed  Google Scholar 

  55. Rey A. L’examen clinique en psychologie. Paris: Presses Universitaires de France; 1964.

    Google Scholar 

  56. Wechsler D. Wechsler Memory Scale and Wechsler Adult Intelligence Scale IV technical manual. San Antonio, TX: Psychological Corporation; 2009.

    Google Scholar 

  57. Delis DC, Kramer JH, Kaplan E, Ober BA. California verbal learning test. 2nd ed. San Antonio, TX: Texas Psychological Corporation; 2000.

    Google Scholar 

  58. Brandt J. The Hopkins Verbal Learning Test: development of a new memory test with six equivalent forms. Clin Neuropsychol. 1991;5:125–42.

    Article  Google Scholar 

  59. Randolph C. Manual: repeatable battery for the assessment of neuropsychological status. San Antonio, TX: Psychological Corporation; 1998.

    Google Scholar 

  60. Hodges JR, Salmon DP, Butters N. Recognition and naming of famous faces in Alzheimer’s disease: a cognitive analysis. Neuropsychologia. 1993;31:775–88.

    Article  CAS  PubMed  Google Scholar 

  61. Osterrieth PA. Le test de copie d’une figure complexe. Arch Psychol. 1944;30:206–356. and [Rey A. L’examen psychologique dans les cas d’encephalopathie traumatique. Arch Psychol 1941;28:286–340].

    Google Scholar 

  62. Alloway TP, Cowan N, Balota D. Working memory: the new intelligence. London: Psychology Press; 2011.

    Google Scholar 

  63. Berlingeri M, Bottini G, Basilico S, Silani G, Zanardi G, Sberna M, et al. Anatomy of the episodic buffer: a voxel-based morphometry study in patients with dementia. Behav Neurol. 2008;19:29–34.

    Article  CAS  PubMed  Google Scholar 

  64. Paulesu E, Frith CD, Frackowiak RS. The neural correlates of the verbal component of working memory. Nature. 1993;362(6418):342–5.

    Article  CAS  PubMed  Google Scholar 

  65. Paulesu E, Connelly A, Frith CD, Friston KJ, Heather J, Myers R, et al. Functional MR imaging correlations with positron emission tomography. Initial experience using a cognitive activation paradigm on verbal working memory. Neuroimaging Clin N Am. 1995;5:207–25.

    CAS  PubMed  Google Scholar 

  66. Miller G, Galanter E, Pribam K. Plans and the structure of behavior. New York, NY: Holt Rinehart and Winston; 1960.

    Book  Google Scholar 

  67. Baddley A. Working memory: looking back and looking forward. Nat Rev Neurosi. 2003;4:829–39.

    Article  CAS  Google Scholar 

  68. Baddeley AD, Hitch G. Working memory. In: Gordon HB, editor. Psychology of learning and motivation: advances in research and theory. New York, NY: Academic; 1974.

    Google Scholar 

  69. Wynn T, Coolidge FL. The rise of homo sapiens. The evolution of modern thinking. Oxford: Wiley Blackwell; 2009.

    Google Scholar 

  70. Baddeley A. The episodic buffer: a new component of working memory? Trends Cogn Sci. 2000;4(11):417–23.

    Article  PubMed  Google Scholar 

  71. Shah P, Miyake A. The separability of working memory resources for spatial thinking and language processing: an individual differences approach. J Exp Psychol Gen. 1996;125:4–27.

    Article  CAS  PubMed  Google Scholar 

  72. LaRocque JJ, Lewis-Peacock JA, Postle BR. Multiple neural states of representation in short term memory? It’s a matter of attention. Front Hum Neurosci. 2014;8:5. doi:10.3389/fnhum.2014.00005.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Galecki P, Talarowska M, Moczulski D, Bobinska K, Opuchlik K, Galecka E, et al. Working memory impairment as a common component in recurrent depressive disorder and certain somatic diseases. Neuro Endocrinol Lett. 2013;34(5):436–45.

    PubMed  Google Scholar 

  74. Roussel M, Dujardin K, Hénon H, Godefroy O. Is the frontal dysexecutive syndrome due to a working memory deficit? Evidence from patients with stroke. Brain. 2012;135:2192–201.

    Article  PubMed  Google Scholar 

  75. Price CC, Mitchell SM, Brumback B, Tanner JJ, Schmalfuss I, Lamar M, et al. MRI-leukoaraiosis thresholds and the phenotypic expression of dementia. Neurology. 2012;79(8):734–40.

    Article  PubMed  PubMed Central  Google Scholar 

  76. van Rooij FG, Schaapsmeerders P, Maaijwee NA, van Duijnhoven DA, de Leeuw FE, Kessels RP, et al. Persistent cognitive impairment after transient ischemic attack. Stroke. 2014;45(8):2270–4.

    Article  PubMed  Google Scholar 

  77. Zheng S, Zhang M, Wang X, Ma Q, Shu H, Lu J, et al. Functional MRI study of working memory impairment in patients with symptomatic carotid artery disease. Biomed Res Int. 2014;2014:Article ID 327270. doi:10.1155/2014/327270.

    Google Scholar 

  78. Kauranen T, Laari S, Turunen K, Mustanoja S, Baumann P, Poutiainen E. The cognitive burden of stroke emerges even with an intact NIH Stroke Scale Score: a cohort study. J Neurol Neurosurg Psychiatry. 2014;85(3):295–9.

    Article  PubMed  Google Scholar 

  79. Wechsler D. Wechsler Memory Scale IV. San Antonio, TX: Pearson; 2009.

    Google Scholar 

  80. Reynolds CR. Comprehensive trail making test. Austin, TX: Pro-ed; 2002.

    Google Scholar 

  81. Gronwall DM. Paced auditory serial-addition task: a measure of recovery from concussion. Percept Mot Skills. 1977;44(2):367–73.

    Article  CAS  PubMed  Google Scholar 

  82. Delis DC, Kaplan E, Kramer JH. Delis Kaplan executive function system. San Antonio, TX: Pearson; 2001.

    Google Scholar 

  83. Cambridge Cognition Ltd, Bottisham, Cambridge, UK; 2015.

    Google Scholar 

  84. Tulving E. Episodic memory: from mind to brain. Annu Rev Psychol. 2002;53:1–25.

    Article  PubMed  Google Scholar 

  85. Clarke A, Tyler LK. Object-specific semantic coding in human perirhinal cortex. J Neurosci. 2014;34(14):4766–75.

    Article  CAS  PubMed  Google Scholar 

  86. Zannino GD, Caltagirone C, Carlesimo GA. The contribution of neurodegenerative diseases to the modelling of semantic memory: a new proposal and a review of the literature. Neuropsychologia. 2015;75:274–90.

    Article  PubMed  Google Scholar 

  87. Kaplan E, Goodglass H, Weintraub S. Boston naming test. 2nd ed. Boston, MA: Lippincott Williams & Wilkins; 2001.

    Google Scholar 

  88. Howard D, Patterson K. Pyramids and palm trees: a test of semantic access from pictures and words. Bury St Edmunds: Thames Valley Test Company; 1992.

    Google Scholar 

  89. Adlam A-LR, Patterson K, Bozeat S, Hodges JR. The Cambridge Semantic Memory Test Battery: detection of semantic deficits in semantic dementia and Alzheimer’s disease. Neurocase. 2010. doi:10.1080/13554790903405693.

    PubMed  Google Scholar 

  90. Robbins TW, James M, Owen AM, Sahakian BJ, McInnes L, Rabbitt P. Cambridge Neuropsychological Test Automated Battery (CANTAB): a factor analytic study of a large sample of normal elderly volunteers. Dementia. 1994;5:266–81.

    CAS  PubMed  Google Scholar 

  91. Gualtieri CT, Johnson LG. Reliability and validity of a computerized neurocognitive test battery, CNS vital signs. Arch Clin Neuropsychol. 2006;21:623–43.

    Article  PubMed  Google Scholar 

  92. Evans JJ, Heggs AJ, Antoun N, Hodges JR. Progressive prosopagnosia associated with selective right temporal lobe atrophy. A new syndrome? Brain. 1995;118:1–13.

    Article  PubMed  Google Scholar 

  93. Stout D, Toth N, Schick K, Chaminade T. Neural correlates of Early Stone Age toolmaking: technology, language and cognition in human evolution. Philos Trans R Soc Lond B Biol Sci. 2008;363(1499):1939–49.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Squire LR. Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem. 2004;82:171–7.

    Article  PubMed  Google Scholar 

  95. Brashers-Krug T, Shadmehr R, Bizzi E. Consolidation in human motor memory. Nature. 1996;382:252–5.

    Article  CAS  PubMed  Google Scholar 

  96. Fitts PM. The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol. 1954;47:381–91.

    Article  CAS  PubMed  Google Scholar 

  97. Foerde K, Shohamy D. The role of the basal ganglia in learning and memory: insight from Parkinson's disease. Neurobiol Learn Mem. 2011;96:624–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Balota DA, Connor LT, Ferraro FR. Implicit memory and the formation of new associations in nondemented parkinson's disease individuals and individuals with senile dementia of the Alzheimer type: a serial reaction time (SRT) investigation. Brain Cogn. 1993;21:163–80.

    Article  PubMed  Google Scholar 

  99. Bullemer P, Nissen MJ, Willingham DB. On the development of procedural knowledge. J Exp Psychol Learn Mem Cogn. 1989;15:1047–60.

    Article  PubMed  Google Scholar 

  100. Allen JS, Anderson SW, Castro-Caldas A, Cavaco S, Damasio H. The scope of preserved procedural memory in amnesia. Brain. 2004;127:1853–67.

    Article  PubMed  Google Scholar 

  101. Beilock SL, Carr TH, MacMahon C, Starkes JL. When paying attention becomes counterproductive: impact of divided versus skill-focused attention on novice and experienced performance of sensorimotor skills. J Exp Psychol. 2002;8(1):6–16.

    Google Scholar 

  102. Treffert DA. The savant syndrome: an extraordinary condition. A synopsis: past, present, future. Philos Trans R Soc Lond B Biol Sci. 2009;364(1522):1351–7.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sacks O. A neurologist’s notebook: a bolt from the blue: where do sudden passions come from? New Yorker. 2007;23:38–42.

    Google Scholar 

  104. Treffert DA. Savant syndrome: realities, myths and misconceptions. J Autism Dev Disord. 2014;44(3):564–71.

    Article  PubMed  Google Scholar 

  105. Takahata K, Saito F, Muramatsu T, Yamada M, Shirahase J, Tabuchi H, et al. Emergence of realism: enhanced visual artistry and high accuracy of visual numerosity representation after left prefrontal damage. Neuropsychologia. 2014;57:38–49.

    Article  PubMed  Google Scholar 

  106. Miller BL, Boone K, Cummings JL, Read SL, Mishkin F. Functional correlates of musical and visual ability in frontotemporal dementia. Br J Psychiatry. 2000;176:458–63.

    Article  CAS  PubMed  Google Scholar 

  107. Treffert D. Islands of genius. London: Jessica Kingsley Publishers; 2010. and [Treffert D. Stephen Wiltshire. Prodigious drawing ability and visual memory. Wisconsin Medical Society. Retrieved 7 Nov 2007].

    Google Scholar 

  108. Kapur N. Paradoxical functional facilitation in brain behavior research. Brain. 1996;119:175–1790.

    Google Scholar 

  109. Geschwind N, Galaburda AM. Cerebral lateralization: biological mechanisms, associations and pathology. Cambridge, MA: MIT Press; 1987.

    Google Scholar 

  110. Happé F, Briskman J, Frith U. Exploring the cognitive phenotype of autism: weak "central coherence" in parents and siblings of children with autism: I. Experimental tests. J Child Psychol Psychiatry. 2001;42(3):299–307.

    Article  PubMed  Google Scholar 

  111. Just MA, Keller TA, Malave VL, Kana RK, Varma S. Autism as a neural systems disorder: a theory of frontal-posterior underconnectivity. Neurosci Biobehav Rev. 2012;36(4):1292–313.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Takahata K, Kato M. Neural mechanism underlying autistic savant and acquired savant syndrome]. Brain Nerve. 2008;60(7):861–9.

    PubMed  Google Scholar 

  113. Ciaramelli E, Neri F, Marini L, Braghittoni D. Improving memory following prefrontal cortex damage with the PQRST method. Front Behav Neurosci. 2015;9:211. doi:10.3389/fnbeh.2015.00211.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Han JW, Oh K, Yoo S, et al. Development of the ubiquitous spaced retrieval-based memory advancement and rehabilitation training program. Psychiatry Investig. 2014;11(1):52–8.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Haslam C, Moss Z, Hodder E. Are two methods better than one? Evaluating the effectiveness of combining errorless learning with vanishing cues. J Clin Exp Neuropsychol. 2010;32(9):973–85.

    Article  PubMed  Google Scholar 

  116. Stringer AY, Small SK. Ecologically-oriented neurorehabilitation of memory: robustness of outcome across diagnosis and severity. Brain Inj. 2011;25(2):169–78.

    Article  PubMed  Google Scholar 

  117. Klingberg T. Training and plasticity of working memory. Trends Cogn Sci. 2010;14:317–24.

    Google Scholar 

  118. Klingberg T, Forssberg H, Westerberg H. Training of working memory in children with ADHD. J Clin Exp Neuropsychol. 2002;24:781–91.

    Google Scholar 

  119. Klingberg T, Fernell E, Olesen PJ, Johnson M, Gustafsson P, Dahlström K, et al. Computerized training of working memory in children with ADHD – a randomized controlled trial. J Am Acad Child Adolesc Psychiatry. 2005;44:177–86.

    Article  PubMed  Google Scholar 

  120. Persson J, Nyberg L. Altered brain activity in healthy seniors: what does it mean ? Prog Brain Res. 2006;157:45–56.

    Article  PubMed  Google Scholar 

  121. Landmann N, Kuhn M, Piosczyk H, Feige B, Baglioni C, Spiegelhalder K, et al. The reorganisation of memory during sleep. Sleep Med Rev. 2014;18(6):531–41.

    Article  PubMed  Google Scholar 

  122. Sibley BA, Beilock SL. Exercise and working memory: an individual differences investigation. J Sport Exerc Psychol. 2007;29:783–91.

    Article  PubMed  Google Scholar 

  123. Zhu N, Jacobs DR, Schreiner PJ, Yaffe K, Bryan N, Launer LJ, et al. Cardiorespiratory fitness and cognitive function in middle age. The CARDIA study. Neurology. 2014;82:1339–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hoffmann, M. (2016). Memory Syndromes. In: Cognitive, Conative and Behavioral Neurology. Springer, Cham. https://doi.org/10.1007/978-3-319-33181-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33181-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33179-9

  • Online ISBN: 978-3-319-33181-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics