Skip to main content

Oxidative Stress Is a Driver of Normal and Pathological Ovarian Aging

  • Chapter
  • First Online:
Inflammation, Aging, and Oxidative Stress

Abstract

Normal ovarian development and aging are discussed, highlighting the role of declining antioxidant capacity and oxidative stress in ovarian aging. Evidence for the importance of oxidative stress in driving pathological ovarian aging comes from various lines of research. Correlative studies in women undergoing assisted reproduction provide evidence that decreased antioxidant capacity and increased oxidative damage are associated with poorer outcomes. Genetically modified mouse models of increased oxidative stress show accelerated ovarian aging. Reactive oxygen species and oxidative stress mediate ovarian damage caused by multiple chemical toxicants and ionizing radiation. Exposure to chemical and physical agents or to under-or over-nutrition during development are increasingly recognized as important determinants of ovarian health during adult life. Accelerated ovarian aging in many of these experimental models can be mitigated by supplementation with antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yao HH. The pathway to femaleness: current knowledge on embryonic development of the ovary. Mol Cell Endocrinol. 2005;230:87–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pepling ME, Sundman EA, Patterson NL, Gephardt GW, Medico LJ, Wilson KJ. Differences in oocyte development and estradiol sensitivity among mouse strains. Reproduction. 2010;139:349–57.

    Article  CAS  PubMed  Google Scholar 

  3. Pepling ME. From primordial germ cell to primordial follicle: mammalian female germ cell development. Genesis. 2006;44:622–32.

    Article  CAS  PubMed  Google Scholar 

  4. Pepling ME. Follicular assembly: mechanisms of action. Reproduction. 2012;143:139–49.

    Article  CAS  PubMed  Google Scholar 

  5. Myers M, Morgan FH, Liew SH, Zerafa N, Gamage TU, Sarraj M, Cook M, Kapic I, Sutherland A, Scott CL, Strasser A, Findlay JK, Kerr JB, Hutt KJ. PUMA regulates germ cell loss and primordial follicle endowment in mice. Reproduction. 2014;148:211–9.

    Article  CAS  PubMed  Google Scholar 

  6. Zheng W, Nagaraju G, Liu Z, Liu K. Functional roles of the phosphatidylinositol 3-kinases (PI3Ks) signaling in the mammalian ovary. Mol Cell Endocrinol. 2012;356:24–30.

    Article  CAS  PubMed  Google Scholar 

  7. Parrott JA, Skinner MK. Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis. Endocrinology. 1999;140:4262–71.

    CAS  PubMed  Google Scholar 

  8. Durlinger ALL, Kramer P, Karels B, de Jong FH, Uilenbroek JTJ, Grootegoed JA, Themmen APN. Control of primordial follicle recruitment by anti-müllerian hormone in the mouse ovary. Endocrinology. 1999;140:5789–96.

    CAS  PubMed  Google Scholar 

  9. White YAR, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive Age women. Nat Med. 2012. doi:10.1038/nm.2669.

    Google Scholar 

  10. Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature. 2004;428:145–50.

    Article  CAS  PubMed  Google Scholar 

  11. Johnson J, Bagley J, Skaznik-Wikiel M, Lee H-J, Adams GB, Nikura Y, Tschudy KS, Tilly JC, Cortes ML, Forkert R, Spitzer T, Iacomini J, Scadden DT, Tilly JL. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell. 2005;122:303–15.

    Article  CAS  PubMed  Google Scholar 

  12. Gosden RG, Laing SC, Felicio LS, Nelson JF, Finch CE. Imminent oocyte exhaustion and reduced follicular recruitment mark the transition to acyclicity in aging C57BL/6J mice. Biol Reprod. 1983;28:255–60.

    Article  CAS  PubMed  Google Scholar 

  13. Faddy MJ, Gosden RG, Gougeon A, Richardson SJ, Nelson JF. Accelerated disappearance of ovarian follicles in Mid-life: implications for forecasting menopause. Hum Reprod. 1992;7:1342–6.

    CAS  PubMed  Google Scholar 

  14. Miller PB, Charleston JS, Battaglia DE, Klein NA, Soules MR. Morphometric analysis of primordial follicle number in pigtailed monkey ovaries: symmetry and relationship with Age. Biol Reprod. 1999;61:553–6.

    Article  CAS  PubMed  Google Scholar 

  15. Mandl AM, Shelton M. A quantitative study of oocytes in young and Old nulliparous laboratory rats. J Endocrinol. 1959;18:444–50.

    Article  CAS  PubMed  Google Scholar 

  16. Jones KP, Walker LC, Anderson D, Lacreuse A, Robson SL, Hawkes K. Depletion of ovarian follicles with Age in chimpanzees: similarities to humans. Biol Reprod. 2007;77:247–51.

    Article  CAS  PubMed  Google Scholar 

  17. Cloutier CT, Coxworth JE, Hawkes K. Age-related decline in ovarian follicle stocks differ between chimpanzees (Pan troglodytes) and humans. Biol Reprod. 2015;37:10.

    Google Scholar 

  18. Hirshfield AN. Size-frequency analysis of atresia in cycling rats. Biol Reprod. 1988;38:1181–8.

    Article  CAS  PubMed  Google Scholar 

  19. Keefe DL, Liu L. Telomeres and reproductive aging. Reprod Fertil Dev. 2009;21:10–4.

    Article  CAS  PubMed  Google Scholar 

  20. Ottolenghi C, Uda M, Hamatani T, Crisponi L, Garcia J-E, Ko M, Pilia G, Sforza C, Schlessinger D, Forabosco A. Aging of oocyte, ovary, and human reproduction. Ann N Y Acad Sci. 2004;1034:117–31.

    Article  CAS  PubMed  Google Scholar 

  21. Broekmans FJ, Knauff EAH, te Velde ER, Macklon NS, Fauser BC. Female reproductive ageing: current knowledge and future trends. Trends Endocrinol Metab. 2007;18:58–65.

    Article  CAS  PubMed  Google Scholar 

  22. Eichenlaub-Ritter U, Vogt E, Yin H, Gosden R. Spindles, mitochondria and redox potential in ageing oocytes. Reprod Biomed Online. 2003;8:45–58.

    Article  Google Scholar 

  23. Tarín JJ, Peréz-Albalá S, Cano A. Cellular and morphological traits of oocytes retrieved from aging mice after exogenous ovarian stimulation. Biol Reprod. 2001;65:141–50.

    Article  PubMed  Google Scholar 

  24. Tarín JJ, Pérez-Albalá S, Cano A. Oral antioxidants counteract the negative effects of female aging on oocyte quantity and quality in the mouse. Mol Reprod Dev. 2002;61:385–97.

    Article  PubMed  CAS  Google Scholar 

  25. Tarín JJ. Potential effects of Age-associated oxidative stress on mammalian oocytes/embryos. Mol Hum Reprod. 1996;2:717–24.

    Article  PubMed  Google Scholar 

  26. Titus S, Li F, Stobezki R, Akula K, Unsal E, Jeong K, Dickler M, Robson M, Moy F, Goswami S, Oktay K. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci Transl Med. 2013;5:ra21.

    Article  CAS  Google Scholar 

  27. Liu J, Wang W, Sun X, Liu L, Jin H, Li M, Witz C, Williams D, Griffith J, Skorupski J, Haddad G, Gill J. DNA microarray reveals that high proportions of human blastocysts from women of advanced maternal Age Are aneuploid and mosaic. Biol Reprod. 2012;87(148):141–9.

    PubMed  PubMed Central  Google Scholar 

  28. van Noord PAH, Boersma H, Dubas JS, te Velde ER, Dorland M. Age at natural menopause in a population-based screening cohort: the role of menarche, fecundity, and lifestyle factors. Fertil Steril. 1997;68:95–102.

    Article  PubMed  Google Scholar 

  29. Dorjgochoo T, Gao Y-T, Chow W-H, X-o S, Yang G, Cai Q, Rothman N, Cai H, Li H, Deng X, Shrubsole MJ, Murff H, Milne G, Zheng W, Dai Q. Obesity, Age, and oxidative stress in middle-aged, and older women. Antioxid Redox Signal. 2011;14:2453–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Das S, Chattopadhyay R, Ghosh S, Ghosh S, Goswami SK, Chakravarty BN, Chaudhury K. Reactive oxygen species level in follicular fluid—Embryo quality marker in IVF? Hum Reprod. 2006;21:2403–7.

    Article  CAS  PubMed  Google Scholar 

  31. Attaran M, Pasqualatto EB, Falcone T, Goldberg JM, Miller KF, Agarwal A, Sharma RK. The effect of follicular fluid reactive oxygen species on the outcome of in vitro fertilization. Int J Fertil. 2000;45:314–20.

    CAS  Google Scholar 

  32. Tatone C, Amicarelli F, Carbone MC, Monteleone P, Caserta D, Marci R, Artini PG, Piomboni P, Focarelli R. Cellular and molecular aspects of ovarian follicle ageing. Hum Reprod Update. 2008;14:131–42.

    Article  CAS  PubMed  Google Scholar 

  33. Wiener-Megnazi Z, Vardi L, Lissak A, Shnizer S, Reznick AZ, Ishai D, Lahav-Baratz S, Shiloh H, Koifman M, Dirnfeld M. Oxidative stress indices in follicular fluid as measured by the thermochemi-luminescence assay correlate with outcome parameters in in vitro fertilization. Fertil Steril. 2004;82 Suppl 3:1171–6.

    Article  CAS  PubMed  Google Scholar 

  34. Carbone MC, Tatone C, Monache SD, Marci R, Caserta D, Colonna R, Amicarelli F. Antioxidant enzymatic defences in human follicular fluid: characterization and Age-dependent changes. Mol Hum Reprod. 2003;9:639–43.

    Article  CAS  PubMed  Google Scholar 

  35. Matos L, Stevenson D, Gomes F, Silva-Carvalho JL, Almeida H. Superoxide DIsmutase expression in human cumulus oophorus cells. Mol Hum Reprod. 2009;15:411–9.

    Article  CAS  PubMed  Google Scholar 

  36. Tatone C, Carbone MC, Falone S, Aimola P, Giardinelli A, Caserta D, Marci R, Pandolfi A, Ragnelli AM, Amicarelli F. Age-dependent changes in the expression of superoxide dismutases and catalase Are associated with Ultrastructural modifications in human granulosa cells. Mol Reprod Dev. 2006;12:655–60.

    Article  CAS  Google Scholar 

  37. Grøndahl ML, Yding Andersen C, Bogstad J, Nielsen FC, Meinertz H, Borup R. Gene expression profiles of single human mature oocytes in relation to Age. Hum Reprod. 2010;25:957–68.

    Article  PubMed  CAS  Google Scholar 

  38. Reeg S, Grune T. Protein oxidation in aging: does It play a role in aging progression? Antioxid Redox Signal. 2015;23:239–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lim J, Luderer U. Oxidative damage increases and antioxidant gene expression decreases with aging in the mouse ovary. Biol Reprod. 2011;84:775–82.

    Article  CAS  PubMed  Google Scholar 

  40. Yeh J, Bowman MJ, Browne RW, Chen N. Reproductive aging results in a reconfigured ovarian antioxidant defense profile in rats. Fertil Steril. 2005;84 Suppl 2:1109–13.

    Article  CAS  PubMed  Google Scholar 

  41. Pan H, Ma P, Zhu W, Schultz RM. Age-associated increase in aneuploidy and changes in gene expression in mouse eggs. Dev Biol. 2008;316:397–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hamatani T, Falco G, Carter MG, Akutsu H, Stagg CA, Sharov AA, Dudekula DB, VanBuren V, Ko MSH. Age-associated alteration of gene expression patterns in mouse oocytes. Hum Mol Genet. 2004;13:2263–78.

    Article  CAS  PubMed  Google Scholar 

  43. Lord T, Martin JH, Aitken RJ. Accumulation of electrophilic aldehydes during postovulatory aging of mouse oocytes causes reduced fertility, oxidative stress, and apoptosis. Biol Reprod. 2015;92:33.

    Article  PubMed  CAS  Google Scholar 

  44. Miyamoto K, Sato EF, Kasahara E, Jikumara M, Hiramoto K, Tabata H, Katsuragi M, Odo S, Utsumi K, Inoue M. Effect of oxidative stress during repeated ovulation on the structure and functions of the ovary, oocytes, and their mitochondria. Free Radic Biol Med. 2010;49:674–81.

    Article  CAS  PubMed  Google Scholar 

  45. Tarín JJ, Pérez-Albalá S, Pertusa JF, Cano A. Oral administration of pharmacological doses of vitamins C and E reduces reproductive fitness and impairs the ovarian and uterine functions of female mice. Theriogenology. 2002;57:1539–50.

    Article  PubMed  Google Scholar 

  46. Liu J, Liu M, Ye X, Liu K, Huang J, Wang L, Ji G, Liu N, Tang X, Baltz JM, Keefe DL, Liu L. Delay in oocyte aging in mice by the antioxidant N-acetyl-L-cysteine (NAC). Hum Reprod. 2012;27:1411–20.

    Article  CAS  PubMed  Google Scholar 

  47. Liu M, Yin Y, Ye X, Zeng M, Zhao Q, Keefe DL, Liu L. Resveratrol protects against Age-associated infertility in mice. Reproduction. 2013;28:707–17.

    CAS  Google Scholar 

  48. Pirola L, Fröjdö S. Resveratrol: One molecule, many targets. IUBMB Life. 2008;60:323–32.

    Article  CAS  PubMed  Google Scholar 

  49. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444:337–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lord T, Nixon B, Jones KT, Aitken JR. Melatonin prevents postovulatory oocyte aging in the mouse and extends the window for optimal fertilization in vitro. Biol Reprod. 2013;88(67):61–9.

    Google Scholar 

  51. Rebar RW. Mechanisms of premature menopause. Endocrinol Metab Clin North Am. 2005;34:923–33.

    Article  CAS  PubMed  Google Scholar 

  52. Nelson LM. Primary ovarian insufficiency. N Engl J Med. 2009;360:606–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Qin Y, Jiao X, Simpson JL, Chen Z-J. Genetics of primary ovarian insufficiency: New developments and opportunities. Hum Reprod Update. 2015;21(6):787–808.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Murray A, Bennett CE, Perry JRB, Weedon MN, Jacobs PA, Morris DH, Orr N, Schoemaker MJ, Jones M, Ashworth A, Swerdlow AJ, ReproGen Consortium. Common genetic variants Are significant risk factors for early menopause: results from the breakthrough generations study. Hum Mol Genet. 2011;20(1):186–92.

    Article  CAS  PubMed  Google Scholar 

  55. Wallace WHB, Thomson AB, Kelsey TW. The radiosensitivity of the human oocyte. Hum Reprod. 2003;18:117–21.

    Article  CAS  PubMed  Google Scholar 

  56. Wallace WHB, Shalet SM, Hendry JH, Morris-Jone PH, Gattamaneni HR. Ovarian failure following abdominal irradiation in childhood: the radiosensitivity of the human oocyte. Br J Radiol. 1989;62:995–8.

    Article  CAS  PubMed  Google Scholar 

  57. Lo Presti A, Ruvulo G, Gancitano RA, Cittadini E. Ovarian function following radiation and chemotherapy for cancer. Eur J Obstet Gynecol Reprod Biol. 2004;113:S33–40.

    Article  CAS  PubMed  Google Scholar 

  58. Molina JR, Barton DL, Loprinzi CL. Chemotherapy-induced ovarian failure: manifestations and management. Drug Saf. 2005;28:401–16.

    Article  CAS  PubMed  Google Scholar 

  59. Green DM, Kawashima T, Stovall M, Leisenring W, Sklar CA, Mertens AC, Donaldson SS, Byrne J, Robison LL. Fertility of female survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol. 2009;27:2677–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chemaitilly W, Mertens AC, Mitby P, Whitton J, Stovall M, Yasui Y, Robison LL, Sklar CA. Acute ovarian failure in the childhood cancer survivor study. J Clin Endocrinol Metab. 2006;91:1723–8.

    Article  CAS  PubMed  Google Scholar 

  61. Lim J, Nakamura BN, Mohar I, Kavanagh TJ, Luderer U. Glutamate cysteine ligase modifier subunit (gclm) null mice have increased ovarian oxidative stress and accelerated Age-related ovarian failure. Endocrinology. 2015;156(9):3329–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nakamura BN, Fielder TJ, Hoang YD, Lim J, McConnachie LA, Kavanagh TJ, Luderer U. Lack of maternal glutamate cysteine ligase modifier subunit (gclm) decreases oocyte glutathione concentrations and disrupts Preimplantation development in mice. Endocrinology. 2011;152:2806–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Madden JA, Hoyer PB, Devine PJ, Keating AF. Involvement of a volatile metabolite during phosphoramide mustard-induced ovotoxicity. Toxicol Appl Pharmacol. 2014;277:1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhu H, Itoh K, Yamamoto M, Zweier JL, Li Y. Role of Nrf2 signaling in regulation of antioxidants and phase 2 enzymes in cardiac fibroblasts: protection against reactive oxygen and nitrogen species-induced cell injury. FEBS Lett. 2005;579:3029–36.

    Article  CAS  PubMed  Google Scholar 

  65. Ramos-Gomez M, Dolan PM, Itoh K, Yamamoto M, Kensler TW. Interactive effects of nrf2 genotype and Oltipraz on benzo[a]pyrene DNA adducts and tumor yield in mice. Carcinogenesis. 2003;24:461–7.

    Article  CAS  PubMed  Google Scholar 

  66. Chan JY, Kwong M. Impaired expression of glutathione synthetic enzyme genes in mice with targeted deletion of the Nrf2 basic-leucine zipper protein. Biochim Biophys Acta. 2000;1517:19–26.

    Article  CAS  PubMed  Google Scholar 

  67. Lim J, Ortiz L, Nakamura BN, Hoang YD, Banuelos J, Flores VN, Chan JY, Luderer U. Effects of deletion of the transcription factor Nrf2 and benzo[a]pyrene treatment on ovarian follicles and ovarian surface epithelial cells in mice. Reprod Toxicol. 2015;58:24–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hu X, Roberts JR, Apopa PL, Kan YW, Ma Q. Accelerated ovarian failure induced by 4-vinyl cyclohexene diepoxide in Nrf2 null mice. Mol Cell Biol. 2006;26:940–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Uda M, Ottolenghi C, Crisponi L, Garcia J-E, Deiana M, Kimber W, Forabosco A, Cao A, Schlessinger D, Pilia G. Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum Mol Genet. 2004;13:1171–81.

    Article  CAS  PubMed  Google Scholar 

  70. Schmidt D, Ovitt CE, Anlag K, Fehsenfeld S, Gredsted L, Treier A-C, Treier M. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development. 2004;131:933–42.

    Article  CAS  PubMed  Google Scholar 

  71. Benayoun BA, Dipietromaria A, Bazin C, Veitia RA. FOXL2: at the crossroads of female sex determination and ovarian function. In: Forkhead transcription factors: vital elements in biology and medicine. Landes Bioscience and Springer; 2009. pp. 207–226.

    Google Scholar 

  72. Benayoun BA, Batista F, Auer J, Dipietromaria A, L’Hote D, De Baere E, Veitia RA. Positive and negative feedback regulates the transcription factor FOXL2 in response to cell stress: evidence for a regulatory imbalance induced by disease-causing mutations. Hum Mol Genet. 2009;18:632–44.

    Article  CAS  PubMed  Google Scholar 

  73. Batista F, Vaiman D, Dausset J, Fellous M, Veitia RA. Potential targets of FOXL2, a transcription factor involved in craniofacial and follicular development, identified by transcriptomics. Proc Natl Acad Sci U S A. 2007;104:3330–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Benayoun BA, Georges AB, L’Hote D, Andersson N, Dipietromaria A, Todeschini A-L, Caburet S, Bazin C, Anttonen M, Veitia RA. Transcription factor FOXL2 protects granulosa cells from stress and delays cell cycle: role of its regulation by the SIRT1 deacetylase. Hum Mol Genet. 2011;20:1673–86.

    Article  CAS  PubMed  Google Scholar 

  75. Sui X-X, Luo L-L, Xu J-J, Fu Y-C. Evidence that FOXO3a is involved in oocyte apoptosis in the neonatal Rat ovary. Biochem Cell Biol. 2010;88:621–8.

    Article  CAS  PubMed  Google Scholar 

  76. Castrillon DH, Miao L, Kollipara R, Horner JW, DePinho RA. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science. 2003;301:215–8.

    Article  CAS  PubMed  Google Scholar 

  77. Di Emidio G, Falone S, Vitti M, D’Alessandro AM, Vento M, Di Pietro C, Amicarelli F, Tatone C. SIRT1 signalling protects mouse oocytes against oxidative stress and is deregulated during aging. Hum Reprod. 2014;29:2006–17.

    Article  PubMed  CAS  Google Scholar 

  78. Lee CJ, Park HH, Do BR, Yoon YD, Kim JK. Natural and radiation-induced degeneration of the primordial and primary follicles in the mouse ovary. Anim Reprod Sci. 2000;59:109–17.

    Article  CAS  PubMed  Google Scholar 

  79. Lee CJ, Yoon Y-D. ϒ-radiation-induced follicular degeneration in the prepubertal mouse ovary. Mutat Res. 2005;578:247–55.

    Article  CAS  PubMed  Google Scholar 

  80. Ward JF. The complexity of DNA damage: relevance to biological consequences. Int J Radiat Biol. 1994;66:427–32.

    Article  CAS  PubMed  Google Scholar 

  81. Ward JF. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol. 1988;35:95–125.

    Article  CAS  PubMed  Google Scholar 

  82. Riley PA. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol. 1994;65:27–33.

    Article  CAS  PubMed  Google Scholar 

  83. Kim JK, Lee CJ. Effect of exogenous melatonin on the ovarian follicles in ϒ-irradiated mouse. Mutat Res. 2000;449:33–9.

    Article  CAS  PubMed  Google Scholar 

  84. Kujjo LL, Ronningen R, Ross P, Pereira RJG, Rodriguez R, Beyhan Z, Goissis MD, Baumann T, Kagawa W, Camsari C, Smith GW, Kurumizaka H, Yokoyama S, Cibelli JB, Perez GI. RAD51 plays a crucial role in halting cell death program induced by ionizing radiation in bovine oocytes. Biol Reprod. 2012;86:76.

    Article  PubMed  CAS  Google Scholar 

  85. Livera G, Petre-Lazar B, Guerquin M-J, Trautmann E, Coffigny H, Habert R. p63 null mutation protects mouse oocytes from radio-induced apoptosis. Reproduction. 2008;135:3–12.

    Article  CAS  PubMed  Google Scholar 

  86. Guerquin M-J, Duquenne C, Coffigny H, Rouiller-Fabre V, Lambrot R, Bakalska M, Frydman R, Habert R, Livera G. Sex-specific differences in fetal germ cell apoptosis induced by ionizing radiation. Hum Reprod. 2009;24:670–8.

    Article  CAS  PubMed  Google Scholar 

  87. Hanoux V, Pairault C, Bakalska M, Habert R, Livera G. Caspase-2 involvement during ionizing radiation-induced oocyte death in the mouse ovary. Cell Death Differ. 2007;14:671–81.

    Article  CAS  PubMed  Google Scholar 

  88. Kerr JB, Hutt KJ, Michalak EM, Cook M, Vandenberg CJ, Liew SH, Bouillet P, Mills A, Scott CL, Findlay JK, Strasser A. DNA damage-induced primordial follicle oocyte apoptosis and loss of fertility require TAp63-mediated induction of puma and noxa. Mol Cell. 2012;48:343–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cortés-Wanstreet MM, Giedzinski E, Limoli CL, Luderer U. Overexpression of glutamate cysteine ligase protects human COV434 granulosa tumor cells against oxidative and γ-radiation-induced cell death. Mutagenesis. 2009;24:211–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Nitta Y, Hoshi M. Relationship between oocyte apoptosis and ovarian tumors induced by high and Low LET radiations in mice. Int J Radiat Biol. 2003;79:241–50.

    Article  CAS  PubMed  Google Scholar 

  91. Mishra B, Ortiz L, Luderer U. Charged Iron Particles, Typical of Space Radiation, Destroy Ovarian Follicles. Hum. Reprod. 2016; epub ahread of print. doi:10.1093/humrep/dew126.

    Google Scholar 

  92. Byrne J. Long-term genetic and reproductive effects of ionizing radiation and chemotherapeutic agents on cancer patients and their offspring. Teratology. 1999;59:210–5.

    Article  CAS  PubMed  Google Scholar 

  93. Howell S, Shalet S. Gonadal damage from chemotherapy and radiotherapy. Endocrinol Metab Clin North Am. 1998;27:927–43.

    Article  CAS  PubMed  Google Scholar 

  94. Meirow D, Nugent D. The effects of radiotherapy and chemotherapy on female reproduction. Hum Reprod Update. 2001;7:535–43.

    Article  CAS  PubMed  Google Scholar 

  95. Nicosia SV, Matus-Riley M, Meadows AT. Gonadal effects of cancer therapy in girls. Cancer. 1985;55:2364–72.

    Article  CAS  PubMed  Google Scholar 

  96. Davis BJ, Maronpot RR. Chemically associated toxicity and carcinogenicity of the ovary. In: Huff J, Boyd J, Barrett JC, editors. Cellular and molecular mechanisms of hormonal carcinogenesis: environmental influences, in. New York: Wiley-Liss; 1996. p. 285–308.

    Google Scholar 

  97. Jarrell J, Young Lai EV, Barr R, McMahon A, Belbeck L, O’Connell G. Ovarian toxicity of cyclophosphamide alone and in combination with ovarian irradiation in the Rat. Cancer Res. 1987;47:2340–3.

    CAS  PubMed  Google Scholar 

  98. Kumar R, Biggart JD, McEvoy J, McGeown MG. Cyclophosphamide and reproductive function. Lancet. 1972;299:1212–4.

    Article  Google Scholar 

  99. Plowchalk DR, Mattison DR. Phosphoramide mustard is responsible for the ovarian toxicity of cyclophosphamide. Toxicol Appl Pharmacol. 1991;107:472–81.

    Article  CAS  PubMed  Google Scholar 

  100. Shiromizu K, Thorgeirsson SS, Mattison DR. Effect of cyclophosphamide on oocyte and follicle number in Sprague-Dawley rats, C57BL/6N and DBA/2N mice. Pediatr Pharmacol. 1984;4:213–21.

    CAS  Google Scholar 

  101. Warne GL, Fairley KF, Hobbs JB, Martin FIR. Cyclophosphamide-induced ovarian failure. N Engl J Med. 1973;289:1159–62.

    Article  CAS  PubMed  Google Scholar 

  102. Meirow D, Lewis H, Nugent D, Epstein M. Subclinical depletion of primordial follicular reserve in mice treated with cyclophosphamide: clinical importance and proposed accurate investigative tool. Hum Reprod. 1999;14:1903–7.

    Article  CAS  PubMed  Google Scholar 

  103. Davis BJ, Heindel JJ. Ovarian toxicants: multiple mechanisms of action. In: Korach KS, editor. Reproductive and developmental toxicology. New York: Marcel Dekker, Inc; 1998. p. 373–95.

    Google Scholar 

  104. Lopez SG, Luderer U. Effects of cyclophosphamide and buthionine sulfoximine on ovarian glutathione and apoptosis. Free Radic Biol Med. 2004;36:1366–77.

    Article  CAS  PubMed  Google Scholar 

  105. Dirven HAAM, van Ommen B, van Bladeren PJ. Involvement of human glutathione S-transferase isoenzymes in the conjugation of cyclophosphamide metabolites with glutathione. Cancer Res. 1994;54:6215–20.

    CAS  PubMed  Google Scholar 

  106. Gamcsik MP, Dolan ME, Andersson BS, Murray D. Mechanisms of resistance to the toxicity of cyclophosphamide. Curr Pharm Des. 1999;5:587–605.

    CAS  PubMed  Google Scholar 

  107. Chang TK, Weber GF, Crespi CL, Waxman DJ. Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res. 1993;53:5629–37.

    CAS  PubMed  Google Scholar 

  108. Desmeules P, Devine PJ. Characterizing the ovotoxicity of cyclophosphamide metabolites on cultured mouse ovaries. Toxicol Sci. 2006;90:500–9.

    Article  CAS  PubMed  Google Scholar 

  109. Petrillo SK, Desmeules P, Truong T-Q, Devine PJ. Detection of DNA damage in oocytes of small ovarian follicles following phosphoramide mustard exposures of cultured rodent ovaries in vitro. Toxicol Appl Pharmacol. 2011;253:84–102.

    Article  CAS  Google Scholar 

  110. Lloyd DR, Carmichael PL, Phillips DH. Comparison of the formation of 8-hydroxy-2’-deoxyguanosine and single- and double-strand breaks in DNA mediated by Fenton reactions. Chem Res Toxicol. 1998;11:420–7.

    Article  CAS  PubMed  Google Scholar 

  111. Devine PJ, Perreault SD, Luderer U. Roles of reactive oxygen species and antioxidants in ovarian toxicity. Biol Reprod. 2012;86:1–10.

    Article  CAS  Google Scholar 

  112. Flowers J, Ludeman SM, Gamcsik MP, Colvin OM, Shao K-L, Boal JH, Springer JB, Adams DJ. Evidence for a role of chloroethylaziridine in the cytotoxicity of cyclophosphamide. Cancer Chemother Pharmacol. 2000;45:335–44.

    Article  CAS  PubMed  Google Scholar 

  113. Tsai-Turton M, Luong BT, Tan Y, Luderer U. Cyclophosphamide-induced apoptosis in COV434 human granulosa cells involves oxidative stress and glutathione depletion. Toxicol Sci. 2007;98:216–30.

    Article  CAS  PubMed  Google Scholar 

  114. Soleimani R, Heytens E, Darzynkiewicz Z, Oktay K. Mechanisms of chemotherapy-induced human ovarian aging: double strand DNA breaks and microvascular compromise. Aging (Milano). 2011;3:1–12.

    Article  Google Scholar 

  115. Chu H-P, Liao Y, Novak JS, Hu Z, Merkin JJ, Shymkiv Y, Braeckman BP, Dorovkov MV, Nguyen A, Clifford PM, Nagele RG, Harrison DE, Ellis RE, Ryazanov AG. Germline quality control: eEF2K stands guard to eliminate defective oocytes. Dev Cell. 2014;28:561–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. ATSDR. Toxicological profile for polycyclic aromatic hydrocarbons. Atlanta, GA: US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry; 1995.

    Google Scholar 

  117. Shopland DR, Burns DM, Benowitz NL, Amacher RH, editors. Risks associated with smoking cigarettes with low machine-measured yields of tar and nicotine. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, National Cancer Institute; 2001.

    Google Scholar 

  118. Lu X, Kambe F, Cao X, Kozaki Y, Kaji T, Ishii T, Seo H. 3β-hydroxysteroid-Δ24 reductase is a hydrogen peroxide-scavenger, protecting cells from oxidative stress-induced apoptosis. Endocrinology. 2008;149:3267–73.

    Article  CAS  PubMed  Google Scholar 

  119. Lodovici M, Akpan V, Evangelisti C, Dolara P. Sidestream tobacco smoke as the main predictor of exposure to polycyclic aromatic hydrocarbons. J Appl Toxicol. 2004;24:277–81.

    Article  CAS  PubMed  Google Scholar 

  120. Menzie CA, Potocki BB, Santodonato J. Ambient concentrations and exposure to carcinogenic PAHs in the environment. Environ Sci Technol. 1992;26:1278–84.

    Article  CAS  Google Scholar 

  121. Xue W, Warshawsky D. Metabolic activation of polycyclic aromatic hydrocarbon and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharmacol. 2005;206:73–93.

    Article  CAS  PubMed  Google Scholar 

  122. Jensen TK, Henriksen TB, Hjollund NH, Scheike T, Kolstad H, Giwercman A, Ernst E, Bonde JP, Skakkebaek NE, Olsen J. Adult and prenatal exposures to tobacco smoke as risk indicators of fertility among 430 Danish couples. Am J Epidemiol. 1998;148:992–7.

    Article  CAS  PubMed  Google Scholar 

  123. Baird DD, Wilcox AJ. Cigarette smoking associated with delayed conception. JAMA. 1985;253:2979–83.

    Article  CAS  PubMed  Google Scholar 

  124. Alderete E, Eskenazi B, Sholtz R. Effect of cigarette smoking and coffee drinking on time to conception. Epidemiology. 1995;6:403–8.

    Article  CAS  PubMed  Google Scholar 

  125. Hassan MAM, Killick SR. Negative lifestyle is associated with a significant reduction in fecundity. Fertil Steril. 2004;81:384–92.

    Article  PubMed  Google Scholar 

  126. Mattison DR, Plowchalk DR, Meadows MJ, Miller MM, Malek A, London S. The effect of smoking on oogenesis, fertilization, and implantation. Semin Reprod Endocrinol. 1989;7:291–304.

    Article  Google Scholar 

  127. Harlow BL, Signorello LB. Factors associated with early menopause. Maturitas. 2000;35:3–9.

    Article  CAS  PubMed  Google Scholar 

  128. Tuttle AM, Stampfli M, Foster WG. Cigarette smoke causes follicle loss in mice ovaries at concentrations representative of human exposure. Hum Reprod. 2009;24:1452–9.

    Article  CAS  PubMed  Google Scholar 

  129. Mattison DR. Difference in sensitivity of Rat and mouse primordial oocytes to destruction by polycyclic aromatic hydrocarbons. Chem Biol Interact. 1979;28:133–7.

    Article  CAS  PubMed  Google Scholar 

  130. Mattison DR, Thorgeirsson SS. Ovarian aryl hydrocarbon hydroxylase activity and primordial oocyte toxicity of polycyclic aromatic hydrocarbons in mice. Cancer Res. 1979;39:3471–5.

    CAS  PubMed  Google Scholar 

  131. Mattison DR, White NB, Nightingale MR. The effect of benzo(a)pyrene on fertility, primordial oocyte number, and ovarian response to pregnant Mare’s serum gonadotropin. Pediatr Pharmacol. 1980;1:143–51.

    CAS  Google Scholar 

  132. Borman SM, Christian PJ, Sipes IG, Hoyer PB. Ovotoxicity in female fischer rats and B6 mice induced by Low-dose exposure to three polycyclic aromatic hydrocarbons: comparison through calculation of an ovotoxic index. Toxicol Appl Pharmacol. 2000;167:191–8.

    Article  CAS  PubMed  Google Scholar 

  133. Matikainen T, Perez GI, Jurisicova A, Pru JK, Schlezinger JJ, Ryu H-Y, Laine J, Sakai T, Korsmeyer SJ, Casper RF, Sherr DH, Tillly JL. Aromatic hydrocarbon receptor-driven Bax gene expression is required for premature ovarian failure caused by biohazardous environmental chemicals. Nat Genet. 2001;28:355–60.

    Article  CAS  PubMed  Google Scholar 

  134. Mattison DR. Morphology of oocyte and follicle destruction by polycyclic aromatic hydrocarbons in mice. Toxicol Appl Pharmacol. 1980;53:249–59.

    Article  CAS  PubMed  Google Scholar 

  135. Tsai-Turton M, Nakamura BN, Luderer U. Induction of apoptosis by 9,10-dimethyl-1,2-benzanthracene (DMBA) in cultured preovulatory Rat follicles is preceded by a rise in reactive oxygen species and is prevented by glutathione. Biol Reprod. 2007;77:442–51.

    Article  CAS  PubMed  Google Scholar 

  136. MacKenzie KM, Angevine DM. Infertility in mice exposed in utero to benzo(a)pyrene. Biol Reprod. 1981;24:183–91.

    Article  CAS  PubMed  Google Scholar 

  137. Lim J, Lawson GW, Nakamura BN, Ortiz L, Hur JA, Kavanagh TJ, Luderer U. Glutathione-deficient mice have increased sensitivity to transplacental benzo[a]pyrene-induced premature ovarian failure and ovarian tumorigenesis. Cancer Res. 2013;73:908–17.

    Article  CAS  PubMed  Google Scholar 

  138. Igawa Y, Keating AF, Rajapaksa KS, Sipes IG, Hoyer PB. Evaluation of ovotoxicity induced by 7,12-dimethylbenz[a]anthracene and its 3,4-diol metabolite utilizing a Rat in vitro ovarian culture system. Toxicol Appl Pharmacol. 2009;234:361–9.

    Article  CAS  PubMed  Google Scholar 

  139. Bhattacharya P, Keating AF. Protective role for ovarian glutathione S-transferase isoform Pi during 7,12-dimethylbenz[a]anthracene-induced ovotoxicity. Toxicol Appl Pharmacol. 2012;260:201–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Madden JA, Hoyer PB, Devine PJ, Keating AF. Acute 7,12-dimethylbenz[a]anthracene exposure causes differential concentration-dependent follicle depletion and gene expression in neonatal Rat ovaries. Toxicol Appl Pharmacol. 2014;276:179–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sobinoff AP, Mahony M, Nixon B, Roman SD, McLaughlin EA. Understanding the villain: DMBA-induced preantral ovotoxicity involves selective follicular destruction and primordial follicle activation through PI3K/Akt and mTOR signaling. Toxicol Sci. 2011;123:563–75.

    Article  CAS  PubMed  Google Scholar 

  142. Zhang X, Tang N, Hadden TJ, Rishi AK. Akt, foxo and regulation of apoptosis. Biochim Biophys Acta. 1813;2011:1978–86.

    Google Scholar 

  143. LaHair MM, Howe CJ, Rodriguez-Mora O, McCubrey JA, Franklin RA. Molecular pathways leading to oxidative stress-induced phosphorylation of Akt. Antiox Redox Signal. 2006;8:1749–56.

    Article  CAS  Google Scholar 

  144. King SM, Quartuccio SM, Vanderhyden BC, Burdette JE. Early transformative changes in normal ovarian surface epithelium induced by oxidative stress require Akt upregulation, DNA damage and epithelial-stromal interaction. Carcinogenesis. 2013;34:1125–33.

    Article  CAS  PubMed  Google Scholar 

  145. Sobinoff AP, Pye V, Nixon B, Roman SD, McLaughlin EA. Jumping the Gun: smoking constituent BaP causes premature primordial follicle activation and impairs oocyte fusibility through oxidative stress. Toxicol Appl Pharmacol. 2012;260:70–80.

    Article  CAS  PubMed  Google Scholar 

  146. Sobinoff AP, Nixon B, Roman SD, McLaughlin EA. Staying alive: PI3K pathway promotes primordial follicle activation and survival in response to 3MC-induced ovotoxicity. Toxicol Sci. 2012;128:258–71.

    Article  CAS  PubMed  Google Scholar 

  147. O’Brien TJ, Ceryak S, Patierno SR. Complexities of chromium carcinogenesis: role of cellular response, repair, and recovery mechanisms. Mutat Res. 2003;533:3–36.

    Article  PubMed  CAS  Google Scholar 

  148. Keegan GM, Learmonth ID, Case CP. A systematic comparison of the actual, potential, and theoretical health effects of cobalt and chromium exposures from industry and surgical implants. Crit Rev Toxicol. 2008;38:645–74.

    Article  CAS  PubMed  Google Scholar 

  149. Sutton R. Chromium-6 in U.S. Tap Water. Environmental Working Group; 2011.

    Google Scholar 

  150. Stanley JA, Sivakumar KK, Nithy TK, Arosh JA, Hoyer PB, Burghardt RC, Banu SK. Postnatal exposure to chromium through Mother’s milk accelerates follicular atresia in F1 offspring through increased oxidative stress and depletion of antioxidant enzymes. Free Radic Biol Med. 2013;61:179–96.

    Article  CAS  PubMed  Google Scholar 

  151. Sivakumar KK, Stanley JA, Arosh JA, Pepling ME, Burghardt RC, Banu SK. Prenatal exposure to chromium induces early reproductive senescence by increasing germ cell apoptosis and advancing germ cell cyst breakdown in the F1 offspring. Dev Biol. 2014;388:22–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Murthy RC, Junaid M, Saxena DK. Ovarian dysfunction in mice following chromium (VI) exposure. Toxicol Lett. 1996;89:147–54.

    Article  CAS  PubMed  Google Scholar 

  153. Banu SK, Samuel JB, Arosh JA, Burghardt RC, Aruldhas MM. Lactational exposure to hexavalent chromium delays puberty by impairing ovarian development, steroidogenesis, and pituitary hormone synthesis in developing Wistar rats. Toxicol Appl Pharmacol. 2008;232:180–9.

    Article  CAS  PubMed  Google Scholar 

  154. Stanley JA, Sivakumar KK, Arosh JA, Burghardt RC, Banu SK. Edavarone mitigates hexavalent chromium-induced oxidative stress and depletion of antioxidant enzymes while estrogen restores antioxidant enzymes in the Rat ovary in F1 offspring. Biol Reprod. 2014;91:12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Banu SK, Stanley JA, Sivakumar KK, Arosh JA, Barhoumi R, Burghardt RC. Identifying a novel role for X-prolyl aminopeptidase (xpnpep) 2 in CrVI-induced adverse effects on germ cell nest breakdown and follicle development in rats. Biol Reprod. 2015;92:67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Stanley JA, Arosh JA, Burghardt RC, Banu SK. A fetal whole ovarian culture model for the evaluation of CrVI-induced developmental toxicity during germ cell nest breakdown. Toxicol Appl Pharmacol. 2015;289(1):58–69. doi:10.1016/j.taap.2015.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Stanley JA, Lee J, Nithy TK, Arosh JA, Burghardt RC, Banu SK. Chromium-VI arrests cell cycle and decreases granulosa cell proliferation by down-regulating cyclin-dependent kinases (CDK) and Up-regulating CDK-inhibitors. Reprod Toxicol. 2011;32:112–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Banu SK, Stanley JA, Lee J, Stephen SD, Arosh JA, Hoyer PB, Burghardt RC. Hexavalent chromium-induced apoptosis of granulosa cells involves selective Sub-cellular translocation of Bcl-2 members, ERK1/2 and p53. Toxicol Appl Pharmacol. 2011;251:253–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. USEPA. Update of human health ambient water quality criteria: methoxychlor 72-43-5. Washington, DC: US Environmental Protection Agency, Office of Science and Technology, Office of Water; 2015.

    Google Scholar 

  160. Borgeest C, Symonds DA, Mayer LP, Hoyer PB, Flaws JA. Methoxychlor May cause ovarian follicular atresia and proliferation of the ovarian surface epithelium in the mouse. Toxicol Sci. 2002;68:473–8.

    Article  CAS  PubMed  Google Scholar 

  161. Gupta RK, Schuh RA, Fiskum G, Flaws JA. Methoxychlor causes mitochondrial dysfunction and oxidative damage in the mouse ovary. Toxicol Appl Pharmacol. 2006;216:436–45.

    Article  CAS  PubMed  Google Scholar 

  162. Gupta RK, Miller KP, Babus JK, Flaws JA. Methoxychlor inhibits growth and induces atresia of antral follicles through an oxidative stress pathway. Toxicol Sci. 2006;93:382–9.

    Article  CAS  PubMed  Google Scholar 

  163. Sobinoff AP, Pye V, Nixon B, Roman SD, McLaughlin EA. Adding insult to injury: effects of xenobiotic-induced preantral ovotoxicity on ovarian development and oocyte fusibility. Toxicol Sci. 2010;118:653–66.

    Article  CAS  PubMed  Google Scholar 

  164. Sedding DG. FoxO transcription factors in oxidative stress response and ageing—a New fork on the Way to longevity? Biol Chem. 2008;389:279–83.

    Article  CAS  PubMed  Google Scholar 

  165. Lovekamp-Swan T, Davis BJ. Mechanisms of phthalate ester toxicity in the female reproductive system. Environ Health Perspect. 2003;111:139–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lovekamp-Swan T, Jetten AM, Davis BJ. Dual activation of PPARα and PPARγ by mono-(2-ethylhexyl) phthalate in Rat ovarian granulosa cells. Mol Cell Endocrinol. 2003;201:133–41.

    Article  CAS  PubMed  Google Scholar 

  167. Hannon PR, Peretz J, Flaws JA. Daily exposure to Di(2-ethylhexyl) phthalate alters estrous cyclicity and accelerates primordial follicle recruitment potentially Via dysregulation of the phosphatidylinositol 3-kinase signaling pathway in adult mice. Endocrinology. 2014. doi:10.1095/biolreprod.114.119032.

    Google Scholar 

  168. Wang W, Craig ZR, Basavarajappa MS, Hafner KS, Flaws JA. Mono (2-ethylhexyl) phthalate induces oxidative stress and inhibits growth of mouse antral follicles. Biol Reprod. 2012;87:152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Wang W, Craig ZR, Basavarajappa MS, Gupta RK, Flaws JA. Di(2-ethylhexyl) phthalate inhibits growth of mouse ovarian antral follicles through an oxidative stress pathway. Toxicol Appl Pharmacol. 2012;258:288–95.

    Article  CAS  PubMed  Google Scholar 

  170. Hannon PR, Brannick KE, Wang W, Gupta RK, Flaws JA. Di(2-ethylhexyl) phthalate inhibits antral follicle growth, induces atresia, and inhibits steroid hormone production in cultured antral follicles. Toxicol Appl Pharmacol. 2015;284:42–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Guzmán C, García-Becerra R, Aguilar-Medina MA, Méndex I, Merchant-Larios H, Zambrano E. Maternal protein restriction during pregnancy and/or lactation negatively affects follicular ovarian development and steroidogenesis in the prepubertal Rat offspring. Arch Med Res. 2014;45:294–300.

    Article  PubMed  CAS  Google Scholar 

  172. da Silva FT, de Bittencourt BF, Sampaio FJB, da Fonte Ramos C. Maternal malnutrition durnig lactation affects folliculogenesis, gonadotropins, and leptin receptors in adult rats. Nutrition. 2009;26:1000–7.

    Google Scholar 

  173. Aiken CE, Tarry-Adkins JL, Ozanne SE. Suboptimal nutrition in utero causes DNA damage and accelerated aging of the female reproductive tract. FASEB J. 2013;27:3959–65.

    Article  CAS  PubMed  Google Scholar 

  174. Wu LL-Y, Dunning KR, Yang X, Russell DL, Lane M, Norman RJ, Robker RL. High-Fat diet causes lipotoxicity responses in cumulus-oocyte complexes and decreased fertilization rates. Endocrinology. 2010;151:5438–45.

    Article  CAS  PubMed  Google Scholar 

  175. Wu LL, Russell DL, Wong SL, Chen M, Tsai T-S, St. John JC, Norman RJ, Febbraio MA, Carroll J, Robker RL. Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Development. 2015;142:681–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Institutes of Health (ES020454) and the National Aeronautic and Space Administration (NNX14AC50G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Luderer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Luderer, U. (2016). Oxidative Stress Is a Driver of Normal and Pathological Ovarian Aging. In: Bondy, S., Campbell, A. (eds) Inflammation, Aging, and Oxidative Stress. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-33486-8_12

Download citation

Publish with us

Policies and ethics