Skip to main content

The Biology of AYA Cancers

  • Chapter
  • First Online:
Cancer in Adolescents and Young Adults

Part of the book series: Pediatric Oncology ((PEDIATRICO))

Abstract

Investigating the potential biological basis of age-related differences in outcome for AYA with cancer could lead to a better understanding of the biology, facilitate the development of new diagnostic and predictive markers, and identify novel therapeutic targets and treatment approaches for AYA patients. The evidence that cancers in AYA patients may differ biologically from those in older and younger populations includes data from numerous laboratories. However, much of this evidence is preliminary, and large comprehensive studies to confirm and validate these findings are only now beginning to get underway. Indeed, there may be substantial differences in biological and molecular features between different age groups even within the population of AYA patients with a specific cancer type. If age is a good surrogate for a unique tumor biology associated with AYA cancers, then studies of cancers in AYA patients will almost certainly illuminate alternative tumorigenic pathways and will also likely benefit patients in other age groups whose tumors exhibit similar biological/molecular features. The biologic, molecular, and clinical features of five AYA cancers (colon, breast, acute lymphoblastic leukemia, melanoma, and sarcoma) are highlighted in this chapter, and the current state of research for each of them is examined. What will be required to better diagnose, treat, and predict response in patients with AYA cancer is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tricoli JV, Seibel NL, Blair DG et al (2011) Unique characteristics of adolescent and young adult acute lymphoblastic leukemia, breast cancer, and colon cancer. J Natl Cancer Inst 103:628–635

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bleyer A, Barr R, Hayes-Lattin B et al (2008) The distinctive biology of cancer in adolescents and young adults. Nat Rev Cancer 8:288–298

    Article  CAS  PubMed  Google Scholar 

  3. Liu B, Farrington SM, Petersen GM et al (1995) Genetic instability occurs in the majority of young patients with colorectal cancer. Nat Med 1:348–352

    Article  CAS  PubMed  Google Scholar 

  4. Liang JT, Huang KC, Cheng AL et al (2003) Clinicopathological and molecular biological features of colorectal cancer in patients less than 40 years of age. Br J Surg 90:205–214

    Article  CAS  PubMed  Google Scholar 

  5. Hill DA, Furman WL, Billups CA et al (2007) Colorectal carcinoma in childhood and adolescence: a clinicopathologic review. J Clin Oncol 25:5808–5814

    Article  PubMed  Google Scholar 

  6. Ziadi S, Ksiaa F, Ben Gacem R, Labaied N, Mokni M, Trimeche M (2014) Clinicopathologic characteristics of colorectal cancer with microsatellite instability. Pathol Res Pract 210:98–104

    Article  CAS  PubMed  Google Scholar 

  7. Anders CK, Fan C, Parker JS et al (2011) Breast carcinomas arising at a young age: unique biology or a surrogate for aggressive intrinsic subtypes? J Clin Oncol 29:e18–e20

    Article  PubMed  Google Scholar 

  8. Surveillance, epidemiology, and end results (SEER) program (www.seer.cancer.gov) SEER*Stat Database: incidence – SEER 18 Regs research data + Hurricane Katrina impacted Louisiana cases, Nov 2014 Sub (2000–2012) < Katrina/Rita population adjustment >−linked to county attributes – total U.S., 1969–2013 counties, National Cancer Institute, DCCPS, Surveillance Research Program, Surveillance Systems Branch, released Apr 2015, based on the Nov 2014 submission

  9. Ribnikar D, Ribeiro JM, Pinto D, Sousa B, Pinto AC, Gomes E, Moser EC, Cardoso MJ, Cardoso F (2015) Breast cancer under age 40: a different approach. Curr Treat Options Oncol 16(4):16

    Article  CAS  PubMed  Google Scholar 

  10. Peng R, Wang S, Shi Y et al (2011) Patients 35 years old or younger with operable breast cancer are more at risk for relapse and survival: a retrospective matched case-control study. Breast 20:568–573

    Article  PubMed  Google Scholar 

  11. Cancello G, Maisonneuve P, Rotmensz N et al (2010) Prognosis and adjuvant treatment effects in selected breast cancer subtypes of very young women (<35 years) with operable breast cancer. Ann Oncol 21:1974–1981

    Article  CAS  PubMed  Google Scholar 

  12. Keegan TH, DeRouen MC, Press DJ, Kurian AW et al (2012) Occurrence of breast cancer subtypes in adolescent and young adult women. Breast Cancer Res 14:R55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mullighan CG, Willman CL (2011) Advances in the biology of acute lymphoblastic leukemia – from genomics to the clinic. J Adolesc Young Adult Oncol 1:77–86

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chessells JM, Veys P, Kempski H et al (2003) Long-term follow-up of relapsed childhood acute lymphoblastic leukaemia. Br J Haematol 123:396–405

    Article  PubMed  Google Scholar 

  15. Einsiedel HG, von Stackelberg A, Hartmann R et al (2005) Long-term outcome in children with relapsed ALL by risk-stratified salvage therapy: results of trial acute lymphoblastic leukemia-relapse study of the Berlin-Frankfurt-Munster Group 87. J Clin Oncol 23:7942–7950

    Article  PubMed  Google Scholar 

  16. Seibel NL, Steinherz PG, Sather HN et al (2008) Early post-induction intensification therapy improves survival for children and adolescents with high-risk acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Blood 111:2548–2555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Douer D, DeAngelo DJ, Advani A, Arellano M, Litzow M, Damon L, Kovacsovics T, Luger S, Seibel N, Bleyer A (2014) Applying pediatric therapeutic strategies to adults with acute lymphoblastic leukemia and lymphoma. II. Comparison with adult treatment regimens, including hyper-CVAD. Am Oncol Hematol Rev 47–53

    Google Scholar 

  18. Howlader N, Noone AM, Krapcho M et al (2012) SEER cancer statistics review, 1975–2010. National Cancer Institute, Bethesda, http://seer.cancer.gov/csr/1975_2010/, based on November 2012 SEER data submission, posted to the SEER web site, April 2013

    Google Scholar 

  19. Bleyer A (9 Nov 2011) Exponentially increasing incidence of childhood leukemia in young adults. Chemother Found Symp. NYC

    Google Scholar 

  20. Harrison CJ (2009) Cytogenetics of paediatric and adolescent acute lymphoblastic leukaemia. Br J Haematol 144:147–156

    Article  PubMed  Google Scholar 

  21. Aifantis I, Raetz E, Buonamici S (2008) Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol 8:380–390

    Article  CAS  PubMed  Google Scholar 

  22. Pappo AS (2003) Melanoma in children and adolescents. Eur J Cancer 39:2651–2661

    Article  CAS  PubMed  Google Scholar 

  23. Ferrari A, Bono A, Baldi M et al (2005) Does melanoma behave differently in younger children than in adults? A retrospective study of 33 cases of childhood melanoma from a single institution. Pediatrics 115:649–654

    Article  PubMed  Google Scholar 

  24. Sondak VK, Taylor JM, Sabel MS et al (2004) Mitotic rate and younger age are predictors of sentinel lymph node positivity: lessons learned from the generation of a probabilistic model. Ann Surg Oncol 11:247–258

    Article  PubMed  Google Scholar 

  25. Livestro DP, Kaine EM, Michaelson JS et al (2007) Melanoma in the young: differences and similarities with adult melanoma: a case-matched controlled analysis. Cancer 110:614–624

    Article  PubMed  Google Scholar 

  26. Baldini E, Demetri GD, Fletcher CD, Foran J, Marcus KC, Singer S (1999) Adults with Ewing’s sarcoma/primitive neuroectodermal tumor: adverse effect of older age and primary extraosseous disease on outcome. Ann Surg 230:79–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cotterill SJ, Ahrens S, Paulussen M, Jürgens HF, Voûte PA, Gadner H, Craft AW (2000) Prognostic factors in Ewing’s tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing’s Sarcoma Study Group. J Clin Oncol 18:3108–3114

    Article  CAS  PubMed  Google Scholar 

  28. Surveillance, Epidemiology, and End Results (SEER) program (www.seer.cancer.gov) SEER*Stat database: mortality – all COD, aggregated with state, total U.S. (1969–2012) <Katrina/Rita population adjustment>, National Cancer Institute, DCCPS, Surveillance Research Program, Surveillance Systems Branch, released Apr 2015. Underlying mortality data provided by NCHS (www.cdc.gov/nchs)

  29. Kakar S, Aksoy S, Burgart LJ et al (2004) Mucinous carcinoma of the colon: correlation of loss of mismatch repair enzymes with clinicopathologic features and survival. Mod Pathol 17:696–700

    Article  PubMed  Google Scholar 

  30. Durno C, Aronson M, Bapat B et al (2005) Family history and molecular features of children, adolescents, and young adults with colorectal carcinoma. Gut 54:1146–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sultan I, Rodriguez-Galindo C, El-Taani H et al (2010) Distinct features of colorectal cancer in children and adolescents: a population-based study of 159 cases. Cancer 116:758–765

    Article  PubMed  Google Scholar 

  32. Lynch JT, Lynch JF, Lynch PM, Attard T (2008) Hereditary colorectal cancer syndromes: molecular genetics, genetic counseling, diagnosis and management. Fam Cancer 7:27–39

    Article  CAS  PubMed  Google Scholar 

  33. The Cancer Genome Atlas Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330–337

    Article  CAS  PubMed Central  Google Scholar 

  34. Tricoli JV, Rall LB, Karakousis CP et al (1986) Enhanced levels of insulin-like growth factor messenger RNA in human colon carcinomas and liposarcomas. Cancer Res 46:6169–6173

    CAS  PubMed  Google Scholar 

  35. Sjoblom T, Jones S, Wood LD et al (2006) The consensus coding sequence of human breast and colorectal cancers. Science 314:268–274

    Article  CAS  PubMed  Google Scholar 

  36. Wood LD, Parsons DW, Jones S et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318:1108–1113

    Article  CAS  PubMed  Google Scholar 

  37. Advani AS, Hunger SP, Burnett AK (2009) Acute leukemia in adolescents and young adults. Semin Oncol 36:213–226

    Article  CAS  PubMed  Google Scholar 

  38. Stock W (2010) Adolescents and young adults with acute lymphoblastic leukemia. Hematol Am Soc Hematol Educ Program 2010:21–29

    Google Scholar 

  39. Bleyer A, Siegel SE, Coccia PF, Stock W, Seibel NL (2012) Children, adolescents, and young adults with leukemia: the empty half of the glass is growing. J Clin Oncol 30:4037–4038

    Article  PubMed  Google Scholar 

  40. Keegan RHM, Reis LAG, Barr RD, Dahike DV, Pollock BH, Bleyer A (2015) Comparison of cancer survival trends in the United States of adolescents and young adults with those in children and older adults. Cancer (in press)

    Google Scholar 

  41. Barr R, Ries L, Lewis D, Harlan I, Keegan T, Pollock BH, Bleyer A (2015) Incidence and incidence trends of the most frequent cancers in adolescent and young adult Americans, including “non-malignant” tumors. Cancer (in press)

    Google Scholar 

  42. Herold T, Baldus CD, Gokbuget N (2014) Ph like ALL in older adults. N Engl J Med 371:2235

    Article  CAS  PubMed  Google Scholar 

  43. Roberts KG, Li Y, Payne-Turner D et al (2014) Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 371:1005–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mullighan CG, Zhang J, Harvey RC et al (2009) JAK mutations in high risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 106:9414–9418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tasian SK, Doral MY, Mullighan CG et al (2012) Aberrant JAK/STAT and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemias. Blood 120:833–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maude SL, Tasian SK, Vincent T et al (2012) Targeting Jak1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood 120:3510–3518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Loh ML, Zhang J, Mullighan CG et al (2013) Tyrosine kinome sequencing of high risk pediatric acute lymphoblastic leukemia: a report from The Children’s Oncology Group TARGET Project. Blood 121:485–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Perez-Andreu V, Roberts KG, Xu H et al (2015) A genome-wide association study of susceptibility to acute lymphoblastic leukemia in adolescents and young adults. Blood 22:680–686

    Article  CAS  Google Scholar 

  49. Kang H, Chen IM, Wilson CS et al (2010) Gene expression classifiers for relapse free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. Blood 115:1394–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2013) GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide: IARC CancerBase No. 11 [Internet]. International Agency for Research on Cancer, Lyon, Available from: http://globocan.iarc.fr, accessed on 9/14/2015, version 9.13.2015

    Google Scholar 

  51. Anders CK, Fan C, Parker JS, Carey LA et al (2011) Breast carcinomas arising at a young age: unique biology or a surrogate for aggressive intrinsic subtypes? J Clin Oncol 29:e18–e20, epub

    Article  PubMed  Google Scholar 

  52. Narod SA (2012) Breast cancer in young women. Nat Rev Clin Oncol 9:460–470

    Article  CAS  PubMed  Google Scholar 

  53. Johnson RH, Chien FL, Bleyer A (2013) Incidence of breast cancer with distant involvement among women in the United States, 1976 to 2009. JAMA 309:800–805

    Article  CAS  PubMed  Google Scholar 

  54. Jenkins EO, Deal AM, Anders C, Prat A, Perou CM, Carey LA, Muss HB (2014) Age-specific changes in intrinsic breast cancer subtypes. Oncologist 19:1076–1083

    Article  PubMed  PubMed Central  Google Scholar 

  55. Anders CK, Acharya CR, Hsu DS et al (2008) Age-specific differences in oncogenic pathway deregulation seen in human breast tumors. PLoS One 3(1):e1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Anders CK, Hsu DS, Broadwater G et al (2008) Young age at diagnosis correlates with worse prognosis and defines a subset of breast cancers with shared patterns of gene expression. J Clin Oncol 26:3324–3330

    Article  PubMed  Google Scholar 

  57. Azim HA Jr, Michiels S, Bedard PL et al (2012) Elucidating prognosis and biology of breast cancer arising in young women using gene expression profiling. Clin Cancer Res 18:1341–1351

    Article  CAS  PubMed  Google Scholar 

  58. Carvalho LV, Pereira EM, Frappart L et al (1992) Molecular characterization of breast cancer in young Brazilian women. Rev Assoc Med Bras 56:278–287

    Google Scholar 

  59. Collins LC, Marotti JD, Gelber S et al (2012) Pathologic features and molecular phenotype by patient age in a large cohort of young women with breast cancer. Breast Cancer Res Treat 131:1061–1066

    Article  CAS  PubMed  Google Scholar 

  60. Young SR, Pilarski RT, Donenberg T et al (2009) The prevalence of BRCA1 mutations among young women with triple-negative breast cancer. BMC Cancer 9:86, epub

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang Q, Zhang Q, Cong H, Zhang X (2012) The ectopic expression of BRCA1 is associated with genesis, progression, and prognosis of breast cancer in young patients. Diagn Pathol 7:181, epub

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Guttery DS, Hancox RA, Mulligan KT et al (2010) Association of invasion-promoting tenascin-C additional domains with breast cancers in young women. Breast Cancer Res 12:R57, epub

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. TCGA: The Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70

    Article  CAS  PubMed Central  Google Scholar 

  64. Prat A, Adamo B, Cheang MC et al (2013) Molecular characterization of basal-like and non-basal-like triple-negative breast cancer. Oncologist 18:123–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Servant N, Bollet MA, Halfwerk H et al (2012) Search for a gene expression signature of breast cancer local recurrence in young women. Clin Cancer Res 18:1704–1715

    Article  CAS  PubMed  Google Scholar 

  66. Loo LW, Wang Y, Flynn EM et al (2011) Genome-wide copy number alterations in subtypes of invasive breast cancers in young white and African American women. Breast Cancer Res Treat 127:297–308

    Article  PubMed  PubMed Central  Google Scholar 

  67. Stevens KN, Vachon CM, Lee AM et al (2011) Common breast cancer susceptibility loci are associated with triple-negative breast cancer. Cancer Res 71:6240–6249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lange JR, Palis BE, Chang DC et al (2007) Melanoma in children and teenagers: an analysis of patients from the National Cancer Data Base. J Clin Oncol 25:1363–1368

    Article  PubMed  Google Scholar 

  69. Dadras SS (2011) Molecular diagnostics in melanoma: current status and perspectives. Arch Pathol Lab Med 135:860–869

    CAS  PubMed  Google Scholar 

  70. Bastian BC, Wesselmann U, Pinkel D, Leboit PE (1999) Molecular cytogenetic analysis of Spitz nevi shows clear differences to melanoma. J Invest Dermatol 113:1065–1069

    Article  CAS  PubMed  Google Scholar 

  71. Uribe P, Wistuba II, Solar A et al (2005) Comparative analysis of loss of heterozygosity and microsatellite instability in adult and pediatric melanoma. Am J Dermatopathol 27:279–285

    Article  PubMed  Google Scholar 

  72. Hansson J (2008) Familial melanoma. Surg Clin North Am 88:897–916

    Article  PubMed  Google Scholar 

  73. van Dijk MC, Bernsen MR, Ruiter DJ (2005) Analysis of mutations in B-RAF, N-RAS, and H-RAS genes in the differential diagnosis of Spitz nevus and spitzoid melanoma. Am J Surg Pathol 29:1145–1151

    Article  PubMed  Google Scholar 

  74. Fullen DR, Poynter JN, Lowe L et al (2006) BRAF and NRAS mutations in spitzoid melanocytic lesions. Mod Pathol 19:1324–1332

    Article  CAS  PubMed  Google Scholar 

  75. Daniotti M, Ferrari A, Frigerio S et al (2009) Cutaneous melanoma in childhood and adolescence shows frequent loss of INK4A and gain of KIT. J Invest Dermatol 129:1759–1768

    Article  CAS  PubMed  Google Scholar 

  76. Al Dhaybi R, Agoumi M, Gagne I et al (2011) p16 expression: a marker of differentiation between childhood malignant melanomas and Spitz nevi. J Am Acad Dermatol 65:357–363

    Article  CAS  PubMed  Google Scholar 

  77. Jukic DM, Rao UN, Kelly L et al (2010) Micro RNA profiling analysis of differences between the melanoma of young adults and older adults. J Transl Med 8:27, epub

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fletcher CDM et al (eds) (2013) WHO classification of tumours of soft tissue and bone, 4th edn. IARC Press, Lyon

    Google Scholar 

  79. Wagner AJ, Goldberg JM, Dubois SG et al (2012) Tivantinib ARQ 197, a selective inhibitor of MET, in patients with microphthalmia transcription factor-associated tumors. Cancer 118:5894–5902

    Article  CAS  PubMed  Google Scholar 

  80. Rosenberg AE, Cleton-Jansen AM, de Pineux G et al (2013) Conventional osteosarcoma. In: Fletcher Ch DM, Bridge JA, Hogendoorn PAW (eds) WHO classification of tumours of soft tissue and bone. IARC, Lyon

    Google Scholar 

  81. Mirabello L, Troisi RJ, Savage SA (2009) Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer 115:1531–1543

    Article  PubMed  PubMed Central  Google Scholar 

  82. Stiller CA, Bielack SS, Jundt G, Steliarova-Foucher D (2006) Bone tumours in European children and adolescents, 1978–1997. Report from the Automated Childhood Cancer Information System project. Eur J Cancer 42:2124–2135

    Article  CAS  PubMed  Google Scholar 

  83. Kansara M, Teng MW, Smyth MJ, Thomas DM (2014) Translational biology of osteosarcoma. Nat Rev Cancer 14:722–735

    Article  CAS  PubMed  Google Scholar 

  84. Kuijjer ML, Hogendoorn PC, Cleton-Jansen AM (2013) Genome-wide analyses on high-grade osteosarcoma: making sense of a genomically most unstable tumor. Int J Cancer 133:2512–2521

    CAS  PubMed  Google Scholar 

  85. Chen X, Armita Bahrami A, Pappo A et al (2014) Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep 7:104–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Signatures of mutational processes in human cancer. Nature 502:415–421

    Article  CAS  Google Scholar 

  87. Bielack S, Smeland S, Whelan J et al (2015) Methotrexate, doxorubicin, and cisplatin (map) plus maintenance pegylated interferon alfa-2b versus MAP alone in patients with resectable high-grade osteosarcoma and good histologic response to preoperative MAP: first results of the EURAMOS-1 good response randomized controlled trial. J Clin Oncol 33:2279–2287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Meyers PA, Schwartz CL, Krailo MD et al (2008) Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival – a report from the Children’s Oncology Group. J Clin Oncol 26:633–638

    Article  CAS  PubMed  Google Scholar 

  89. Antonescu C (2014) Round cell sarcomas beyond Ewing: emerging entities. Histopathlogy 64:26–37

    Article  Google Scholar 

  90. Karski EE, Matthay KK, Neuhaus JM, Goldsby RE, Dubois SG (2013) Characteristics and outcomes of patients with Ewing sarcoma over 40 years of age at diagnosis. Cancer Epidemiol 37:29–33

    Article  PubMed  Google Scholar 

  91. Szuhai K, Cleton-Jansen AM, Hogendoorn PA et al (2012) Cancer Genet 205:193–204

    Article  CAS  PubMed  Google Scholar 

  92. de Alava E, Lessnick SL, Sorensen PH (2013) Ewing sarcoma. In: Fletcher Ch DM, Bridge JA, Hogendoorn PAW (eds) WHO classification of tumours of soft tissue and bone. IARC, Lyon

    Google Scholar 

  93. Toomey EC, Schiffman JD, Lessnick SL (2010) Recent advances in the molecular pathogenesis of Ewing’s sarcoma. Oncogene 29:4504–4516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lessnick SL, Ladanyi M (2012) Molecular pathogenesis of Ewing sarcoma: new therapeutic and transcriptional targets. Annu Rev Pathol 7:145–159

    Article  CAS  PubMed  Google Scholar 

  95. Schwartz JC, Cech TR, Parker RR (2015) Biochemical properties and biological functions of FET proteins. Ann Rev Biochem 84:355–379

    Article  CAS  PubMed  Google Scholar 

  96. Kar A, Gutierrez-Hartmann A (2013) Molecular mechanisms of ETS transcription factor-mediated tumorigenesis. Crit Rev Biochem Mol Biol 48:522–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kovar H (2010) Downstream EWS/FLI1 – upstream Ewing’s sarcoma. Genome Med 2:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sand LG, Szuhai K, Hogendoorn PCW (2015) Sequencing overview of Ewing sarcoma: a journey across genomic, epigenomic and transcriptomic landscapes. Int J Mol Sci 16:1617–6215

    Google Scholar 

  99. Mackintosh C, Madoz-Gurpide J, Ordonez JL et al (2010) The molecular pathogenesis of Ewing’s sarcoma. Cancer Biol Ther 9:655–667

    Article  CAS  PubMed  Google Scholar 

  100. Riggi N, Knoechel B, Gillespie SM et al (2014) EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell 28:668–681

    Article  CAS  Google Scholar 

  101. Tomazou EM, Sheffield NC, Schmidt C et al (2015) Epigenome mapping reveals distinct modes of gene regulation and widespread enhancer reprogramming by the oncogenic fusion protein EWS-FLI1. Cell Rep 10:1082–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tsuda M, Davis IJ, Argani P et al (2007) TFE3 fusions activate MET signaling by transcriptional up-regulation, defining another class of tumors as candidates for therapeutic MET inhibition. Cancer Res 67:919–929

    Article  CAS  PubMed  Google Scholar 

  103. Taylor JGT, Cheuk AT, Tsang PS et al (2009) Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models. J Clin Invest 119:3395–3407

    CAS  PubMed  Google Scholar 

  104. Cao L, Yu Y, Bilke S et al (2010) Genome-wide identification of PAX3-FKHR binding sites in rhabdomyosarcoma reveals candidate target genes important for development and cancer. Cancer Res 70:6497–6508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Taulli R, Scuoppo C, Bersani F et al (2006) Validation of met as a therapeutic target in alveolar and embryonal rhabdomyosarcoma. Cancer Res 66:4742–4749

    Article  CAS  PubMed  Google Scholar 

  106. Grohar PJ, Woldemichael GM, Griffin LB et al (2011) Identification of an inhibitor of the EWS-FLI1 oncogenic transcription factor by high-throughput screening. J Natl Cancer Inst 103:962–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dagher R, Long LM, Read EJ et al (2002) Pilot trial of tumor-specific peptide vaccination and continuous infusion interleukin-2 in patients with recurrent Ewing sarcoma and alveolar rhabdomyosarcoma: an inter-institute NIH study. Med Pediatr Oncol 38:158–164

    Article  PubMed  Google Scholar 

  108. Le Deley MC, Delattre O, Schaefer KL et al (2010) Impact of EWS-ETS fusion type on disease progression in Ewing’s sarcoma/peripheral primitive neuroectodermal tumor: prospective results from the cooperative Euro-E.W.I.N.G. 99 trial. J Clin Oncol 28:1982–1988

    Article  CAS  PubMed  Google Scholar 

  109. van Doorninck JA, Ji L, Schaub B, Shimada H et al (2010) Current treatment protocols have eliminated the prognostic advantage of type 1 fusions in Ewing sarcoma: a report from the Children’s Oncology Group. J Clin Oncol 28:1989–1994

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kovar H (2014) Blocking the road, stopping the engine or killing the driver? Advances in targeting EWS/FLI-1 fusion in Ewing sarcoma as novel therapy. Expert Opin Ther Targets 18:1315–1328

    Article  CAS  PubMed  Google Scholar 

  111. Potratz J, Heribert Jürgens H, Craft A, Dirksen U (2012) Ewing sarcoma: biology-based therapeutic perspectives. Pediatr Hematol Oncol 29:12–27

    Article  CAS  PubMed  Google Scholar 

  112. Stuurmeijer AJ, de Bruin D, Kessel A et al (2013) Synovial sarcoma. In: Fletcher CDM, Bridge JA, Hogendoorn PAW (eds) WHO classification of tumours of soft tissue and bone. IARC, Lyon, pp 213–215

    Google Scholar 

  113. Sultan I, Rodriguez-Galindo C, Saab R et al (2009) Comparing children and adults with synovial sarcoma in the Surveillance, Epidemiology, and End Results program, 1983 to 2005: an analysis of 1268 patients. Cancer 115:3537–3547

    Article  PubMed  Google Scholar 

  114. Vienterie M, Ho V, Kaal SEJ et al (2015) Age as an independent prognostic factor for survival of localised synovial sarcoma patients. Br J Cancer 113:1602–1606

    Article  Google Scholar 

  115. Thway K, Fisher C (2014) Synovial sarcoma: defining features and diagnostic evolution. Ann Diagn Pathol 18:369–380

    Article  PubMed  Google Scholar 

  116. Kerouanton A, Jimenez I, Cellier C et al (2014) Synovial sarcoma in children and adolescents. J Pediatr Hematol Oncol 36:257–262

    Article  CAS  PubMed  Google Scholar 

  117. Kubo T, Shimose S, Fujimori J et al (2015) Prognostic value of SS18-SSX fusion type in synovial sarcoma; systematic review and meta-analysis. SpringerPlus 4:375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nielsen TO, Poulin NM, Ladanyi M (2015) Synovial sarcoma: recent discoveries as a roadmap to new avenues for therapy. Cancer Discov 5:124–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kadoch C, Crabtree GR (2013) Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell 153:71–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Su L, Sampaio AV, Jones KB et al (2012) Deconstruction of the SS18-SSX fusion oncoprotein complex: insights into disease etiology and therapeutics. Cancer Cell 21:333–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Vienterie M, Hillebrandt-Roeffen MHS, Flucke U et al (2015) Next generation sequencing in synovial sarcoma reveals novel gene mutations. Oncotarget 34:680–690

    Google Scholar 

  122. Lagarde P, Przybyl J, Brulard C et al (2013) Chromosome instability accounts for reverse metastatic outcomes of pediatric and adult synovial sarcomas. J Clin Oncol 31:608–615

    Article  CAS  PubMed  Google Scholar 

  123. Przybyl J, Sciot R, Wozniak A et al (2014) Metastatic potential is determined early in synovial sarcoma development and reflected by tumor molecular features. Int J Biochem Cell Biol 53:505–513

    Article  CAS  PubMed  Google Scholar 

  124. Joseph CG, Hwang H, Jiao Y et al (2014) Exomic analysis of myxoid liposarcomas, synovial sarcomas, and osteosarcomas. Gene Chromosome Cancer 53:15–24

    Article  CAS  Google Scholar 

  125. Ferrari A, Rognone A, Casanova M et al (2008) Colon carcinoma in children and adolescents: the experience of the Istituto Nazionale Tumori of Milan, Italy. Pediatr Blood Cancer 50:588–593

    Article  PubMed  Google Scholar 

  126. Hubbard JM, Grothey A (2013) Adolescent and young adult colon cancer. J Natl Compr Cancer Netw 11:1219–1225

    Article  Google Scholar 

Download references

Acknowledgments

Cary K. Anders, M.D.

Associate Professor of Medicine

Division of Hematology Oncology

University of North Carolina at Chapel Hill

Lineberger Comprehensive Cancer Center

Chapel Hill, NC 27599

Donald G. Blair, Ph.D.

Division of Cancer Biology

National Cancer Institute

9609 Medical Center Drive

Rockville, M.D. 20892

Lisa A. Boardman, M.D.

Professor of Medicine

Mayo Clinic College of Medicine

200 First Street SW

Rochester, MN 55906

Brandon Hayes-Lattin, M.D., F.A.C.P.

Associate Professor of Medicine

Medical Director, Adolescent and Young Adult (AYA) Oncology Program

Division of Hematology and Medical Oncology

Knight Cancer Institute

Oregon Health and Science University

3181 SW Sam Jackson Park Road

Portland, OR 97239

Stephan P. Hunger, M.D.

Chief, Division of Oncology

Director, Center for Childhood Cancer Research

Children’s Hospital of Philadelphia

3501 Civic Center Boulevard, CTRB#3060

Philadelphia, PA 19104

Javed Khan, M.D.

Deputy Chief, Genetics Branch

Center for Cancer Research

National Cancer Institute

Pediatric Oncology Branch

Bethesda, M.D. 20892

Shivaani Kummar, M.D.

Professor of Medicine

Director, Phase I Clinical Research ProgramStanford University School of Medicine

780 Welch Road,

Room CJ250L

Palo Alto, CA 94304

Melinda Merchant, M.D., Ph.D.

Center for Cancer Research

National Cancer Institute

Pediatric Oncology Branch

Bethesda, M.D. 20892

Nita L. Seibel, M.D.

Cancer Therapy Evaluation Program

Division of Cancer Treatment and Diagnosis

National Cancer Institute

9609 Medical Center Drive

Rockville, M.D. 20892

Magdalena Thurin, Ph.D.

Cancer Diagnosis Program

Division of Cancer Treatment and Diagnosis

National Cancer Institute

9609 Medical Center Drive

Rockville, M.D. 20892

Cheryl Willman, M.D.

The Maurice and Marguerite Liberman Distinguished Chair in Cancer Research

Professor of Pathology

University of New Mexico School of Medicine Director and CEO

University of New Mexico Cancer Center

1201 Camino de Salud NE

Albuquerque, NM 87131

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James V. Tricoli PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing

About this chapter

Cite this chapter

Tricoli, J.V., Bleyer, A., Anninga, J., Barr, R. (2017). The Biology of AYA Cancers. In: Bleyer, A., Barr, R., Ries, L., Whelan, J., Ferrari, A. (eds) Cancer in Adolescents and Young Adults. Pediatric Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-33679-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33679-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33677-0

  • Online ISBN: 978-3-319-33679-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics