Skip to main content

Single-Molecule Visualization of Biomolecules in the Designed DNA Origami Nanostructures Using High-Speed Atomic Force Microscopy

  • Chapter
  • First Online:
Modified Nucleic Acids in Biology and Medicine

Part of the book series: RNA Technologies ((RNATECHN))

  • 1558 Accesses

Abstract

Visualization of biomolecules is one of the straightforward ways to elucidate the physical properties of individual molecules and their reaction processes. Atomic force microscopy (AFM) enables direct imaging of biomolecules in the physiological environment. Because AFM visualizes the molecules at nanometer-scale spatial resolution, a versatile observation scaffold should be required for the precise imaging of molecules in the reactions. The emergence of DNA origami technology allows the precise placement of target molecules in the designed nanostructures and enables molecules to be detected at the single-molecule level. The DNA origami is applied for visualizing the detailed motions of target molecules in the reaction using high-speed AFM (HS-AFM), which enables the analysis of dynamic motions of biomolecules in a subsecond time resolution.

In this review article, I describe the combination of the DNA origami system and HS-AFM for imaging various biochemical reactions including enzyme reactions and DNA structural changes. For observation of the enzyme reactions including the DNA methylation, base-excision repair, recombination, and transcription, the substrate DNA strands were placed in DNA nanostructures and their reactions were observed by HS-AFM. In addition, DNA structural changes including G-quadruplex formation and disruption, the hybridization and dehybridization of photoresponsive oligonucleotides, B–Z transition, and G-quadruplex/i-motif formation were visualized using this observation system. The stepwise movement of mobile DNA molecule along the DNA track was visualized on the DNA origami surface. Furthermore, the dynamic assembly/disassembly of photoresponsive DNA origami structures and formation of micrometer-sized DNA origami assemblies were directly visualized on the lipid bilayer. Catalytic reactions and RNA interactions were imaged by HS-AFM. These target-orientated observation systems should contribute to the detailed analysis of biomolecule motions in real time and at molecular resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ando T, Kodera N (2012) Visualization of mobility by atomic force microscopy. Methods Mol Biol 896:57–69

    CAS  PubMed  Google Scholar 

  • Ando T, Kodera N, Takai E et al (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci USA 98:12468–12472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asanuma H, Liang X, Nishioka H et al (2007) Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription. Nat Protoc 2:203–212

    Article  CAS  PubMed  Google Scholar 

  • Bacolla A, Wells RD (2004) Non-B DNA conformations, genomic rearrangements, and human disease. J Biol Chem 279:47411–47414

    Article  CAS  PubMed  Google Scholar 

  • Bacolla A, Wells RD (2009) Non-B DNA conformations as determinants of mutagenesis and human disease. Mol Carcinog 48:273–285

    Article  CAS  PubMed  Google Scholar 

  • Bath J, Turberfield AJ (2007) DNA nanomachines. Nat Nanotechnol 2:275–284

    Article  CAS  PubMed  Google Scholar 

  • Bath J, Green SJ, Turberfield AJ (2005) A free-running DNA motor powered by a nicking enzyme. Angew Chem Int Ed 44:4358–4361

    Article  CAS  Google Scholar 

  • Behe M, Felsenfeld G (1981) Effects of methylation on a synthetic polynucleotide: the B--Z transition in poly(dG-m5dC).poly(dG-m5dC). Proc Natl Acad Sci USA 78:1619–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruner SD, Norman DP, Verdine GL (2000) Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 403:859–866

    Article  CAS  PubMed  Google Scholar 

  • Crampton N, Yokokawa M, Dryden DT et al (2007) Fast-scan atomic force microscopy reveals that the type III restriction enzyme EcoP15I is capable of DNA translocation and looping. Proc Natl Acad Sci USA 104:12755–12760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David SS, O'Shea VL, Kundu S (2007) Base-excision repair of oxidative DNA damage. Nature 447:941–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhakal S, Schonhoft JD, Koirala D et al (2010) Coexistence of an ILPR i-motif and a partially folded structure with comparable mechanical stability revealed at the single-molecule level. J Am Chem Soc 132:8991–8997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhakal S, Yu Z, Konik R et al (2012) G-quadruplex and i-motif are mutually exclusive in ILPR double-stranded DNA. Biophys J 102:2575–2584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durand G, Lisi S, Ravelet C et al (2014) Riboswitches based on kissing complexes for the detection of small ligands. Angew Chem Int Ed 53:6942–6945

    Article  CAS  Google Scholar 

  • Endo M, Katsuda Y, Hidaka K et al (2010a) Regulation of DNA methylation using different tensions of double strands constructed in a defined DNA nanostructure. J Am Chem Soc 132:1592–1597

    Article  CAS  PubMed  Google Scholar 

  • Endo M, Katsuda Y, Hidaka K et al (2010b) A versatile DNA nanochip for direct analysis of DNA base-excision repair. Angew Chem Int Ed 49:9412–9416

    Article  CAS  Google Scholar 

  • Endo M, Tatsumi K, Terushima K et al (2012a) Direct visualization of the movement of a single T7 RNA polymerase and transcription on a DNA nanostructure. Angew Chem Int Ed 51:8778–8782

    Article  CAS  Google Scholar 

  • Endo M, Yang Y, Suzuki Y et al (2012b) Single-molecule visualization of the hybridization and dissociation of photoresponsive oligonucleotides and their reversible switching behavior in a DNA nanostructure. Angew Chem Int Ed 51:10518–10522

    Article  CAS  Google Scholar 

  • Endo M, Yang Y, Sugiyama H (2013) DNA origami technology for biomaterials applications. Biomater Sci 1:347–360

    Article  CAS  Google Scholar 

  • Endo M, Takeuchi Y, Suzuki Y et al (2015a) Single-molecule visualization of the activity of a Zn(2+)-dependent DNAzyme. Angew Chem Int Ed 54:10550–10554

    Article  CAS  Google Scholar 

  • Endo M, Xing X, Zhou X et al (2015b) Single-molecule manipulation of the duplex formation and dissociation at the G-quadruplex/i-motif site in the DNA nanostructure. ACS Nano 9:9922–9929

    Article  CAS  PubMed  Google Scholar 

  • Gehring K, Leroy JL, Gueron M (1993) A tetrameric DNA structure with protonated cytosine.cytosine base pairs. Nature 363:561–565

    Article  CAS  PubMed  Google Scholar 

  • Gilmore JL, Suzuki Y, Tamulaitis G et al (2009) Single-molecule dynamics of the DNA-EcoRII protein complexes revealed with high-speed atomic force microscopy. Biochemistry 48:10492–10498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopaul DN, Guo F, Van Duyne GD (1998) Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination. EMBO J 17:4175–4187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabow WW, Jaeger L (2014) RNA self-assembly and RNA nanotechnology. Acc Chem Res 47:1871–1880

    Article  CAS  PubMed  Google Scholar 

  • Grindley ND, Whiteson KL, Rice PA (2006) Mechanisms of site-specific recombination. Annu Rev Biochem 75:567–605

    Article  CAS  PubMed  Google Scholar 

  • Gu HZ, Chao J, Xiao SJ et al (2010) A proximity-based programmable DNA nanoscale assembly line. Nature 465:202–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu H, Furukawa K, Weinberg Z et al (2013) Small, highly active DNAs that hydrolyze DNA. J Am Chem Soc 135:9121–9129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo F, Gopaul DN, Van Duyne GD (1997) Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature 389:40–46

    Article  CAS  PubMed  Google Scholar 

  • Guo F, Gopaul DN, Van Duyne GD (1999) Asymmetric DNA bending in the Cre-loxP site-specific recombination synapse. Proc Natl Acad Sci USA 96:7143–7148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huppert JL, Balasubramanian S (2007) G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res 35:406–413

    Article  CAS  PubMed  Google Scholar 

  • Jovin TM, Soumpasis DM, Mcintosh LP (1987) The transition between B-DNA and Z-DNA. Annu Rev Phys Chem 38:521–560

    Article  CAS  Google Scholar 

  • Jungmann R, Steinhauer C, Scheible M et al (2010) Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett 10:4756–4761

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Mochizuki T, Asanuma H (2009) A supra-photoswitch involving sandwiched DNA base pairs and azobenzenes for light-driven nanostructures and nanodevices. Small 5:1761–1768

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Zhong H, Wang R et al (2011) Crystalline two-dimensional DNA-origami arrays. Angew Chem Int Ed 50:264–267

    Article  CAS  Google Scholar 

  • Liu X, Lu CH, Willner I (2014) Switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines. Acc Chem Res 47:1673–1680

    Article  CAS  PubMed  Google Scholar 

  • Lund K, Manzo AJ, Dabby N et al (2010) Molecular robots guided by prescriptive landscapes. Nature 465:206–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao CD, Sun WQ, Shen ZY et al (1999) A nanomechanical device based on the B-Z transition of DNA. Nature 397:144–146

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi D, Matsumura S, Nakano S et al (2004) Duplex dissociation of telomere DNAs induced by molecular crowding. J Am Chem Soc 126:165–169

    Article  CAS  PubMed  Google Scholar 

  • Morikawa K, Matsumoto O, Tsujimoto M et al (1992) X-ray structure of T4 endonuclease V: an excision repair enzyme specific for a pyrimidine dimer. Science 256:523–526

    Article  CAS  PubMed  Google Scholar 

  • Nash HM, Bruner SD, Scharer OD et al (1996) Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Curr Biol 6:968–980

    Article  CAS  PubMed  Google Scholar 

  • Ohno H, Kobayashi T, Kabata R et al (2011) Synthetic RNA-protein complex shaped like an equilateral triangle. Nat Nanotechnol 6:116–120

    Article  CAS  PubMed  Google Scholar 

  • Osada E, Suzuki Y, Hidaka K et al (2014) Engineering RNA-protein complexes with different shapes for imaging and therapeutic applications. ACS Nano 8:8130–8140

    Article  CAS  PubMed  Google Scholar 

  • Rajendran A, Endo M, Sugiyama H (2012) Single-molecule analysis using DNA origami. Angew Chem Int Ed 51:874–890

    Article  CAS  Google Scholar 

  • Rajendran A, Endo M, Hidaka K et al (2013a) Controlling the stoichiometry and strand polarity of a tetramolecular G-quadruplex structure by using a DNA origami frame. Nucleic Acids Res 41:8738–8747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajendran A, Endo M, Hidaka K et al (2013b) Direct and real-time observation of rotary movement of a DNA nanomechanical device. J Am Chem Soc 135:1117–1123

    Article  CAS  PubMed  Google Scholar 

  • Rajendran A, Endo M, Hidaka K et al (2013c) HIV-1 nucleocapsid proteins as molecular chaperones for tetramolecular antiparallel G-quadruplex formation. J Am Chem Soc 135:18575–18585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajendran A, Endo M, Sugiyama H (2014) State-of-the-art high-speed atomic force microscopy for investigation of single-molecular dynamics of proteins. Chem Rev 114:1493–1520

    Article  CAS  PubMed  Google Scholar 

  • Rothemund PW (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    Article  CAS  PubMed  Google Scholar 

  • Sannohe Y, Endo M, Katsuda Y et al (2010) Visualization of dynamic conformational switching of the G-quadruplex in a DNA nanostructure. J Am Chem Soc 132:16311–16313

    Article  CAS  PubMed  Google Scholar 

  • Schitter G, Astrom KJ, DeMartini BE et al (2007) Design and modeling of a high-speed AFM-scanner. IEEE Trans Control Syst 15:906–915

    Article  Google Scholar 

  • Shirude PS, Okumus B, Ying L et al (2007) Single-molecule conformational analysis of G-quadruplex formation in the promoter DNA duplex of the proto-oncogene c-kit. J Am Chem Soc 129:7484–7485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla GC, Haque F, Tor Y et al (2011) A boost for the emerging field of RNA nanotechnology. ACS Nano 5:3405–3418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui-Jain A, Grand CL et al (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci USA 99:11593–11598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun D, Hurley LH (2009) The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-Myc promoter: implications for drug targeting and control of gene expression. J Med Chem 52:2863–2874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki Y, Gilmore JL, Yoshimura SH et al (2011) Visual analysis of concerted cleavage by type IIF restriction enzyme SfiI in subsecond time region. Biophys J 101:2992–2998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki Y, Endo M, Canas C et al (2014a) Direct analysis of Holliday junction resolving enzyme in a DNA origami nanostructure. Nucleic Acids Res 42:7421–7428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki Y, Endo M, Katsuda Y et al (2014b) DNA origami based visualization system for studying site-specific recombination events. J Am Chem Soc 136:211–218

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Endo M, Yang Y et al (2014c) Dynamic assembly/disassembly processes of photoresponsive DNA origami nanostructures directly visualized on a lipid membrane surface. J Am Chem Soc 136:1714–1717

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Endo M, Sugiyama H (2015a) Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures. Nat Commun 6:8052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki Y, Endo M, Sugiyama H (2015b) Mimicking membrane-related biological events by DNA origami nanotechnology. ACS Nano 9:3418–3420

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi Y, Endo M, Suzuki Y et al (2015) Single-molecule observations of RNA-RNA kissing interactions in a DNA nanostructure. Biomater Sci 4(1):130–135

    Article  Google Scholar 

  • Torring T, Voigt NV, Nangreave J et al (2011) DNA origami: a quantum leap for self-assembly of complex structures. Chem Soc Rev 40:5636–5646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchihashi T, Kodera N, Ando T (2012) Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. Nat Protoc 7:1193–1206

    Article  CAS  PubMed  Google Scholar 

  • Van Duyne GD (2001) A structural view of cre-loxp site-specific recombination. Annu Rev Biophys Biomol Struct 30:87–104

    Article  PubMed  Google Scholar 

  • Van Melckebeke H, Devany M, Di Primo C et al (2008) Liquid-crystal NMR structure of HIV TAR RNA bound to its SELEX RNA aptamer reveals the origins of the high stability of the complex. Proc Natl Acad Sci USA 105:9210–9215

    Article  PubMed  PubMed Central  Google Scholar 

  • Vassylyev DG, Morikawa K (1997) DNA-repair enzymes. Curr Opin Struct Biol 7:103–109

    Article  CAS  PubMed  Google Scholar 

  • Vassylyev DG, Kashiwagi T, Mikami Y et al (1995) Atomic model of a pyrimidine dimer excision repair enzyme complexed with a DNA substrate: structural basis for damaged DNA recognition. Cell 83:773–782

    Article  CAS  PubMed  Google Scholar 

  • Walters DA, Cleveland JP, Thomson NH et al (1996) Short cantilevers for atomic force microscopy. Rev Sci Instrum 67:3583–3590

    Article  CAS  Google Scholar 

  • Wang F, Liu X, Willner I (2015) DNA switches: from principles to applications. Angew Chem Int Ed 54:1098–1129

    Article  CAS  Google Scholar 

  • Wickham SFJ, Endo M, Katsuda Y et al (2011) Direct observation of stepwise movement of a synthetic molecular transporter. Nat Nanotechnol 6:166–169

    Article  CAS  PubMed  Google Scholar 

  • Wickham SFJ, Bath J, Katsuda Y et al (2012) A DNA-based molecular motor that can navigate a network of tracks. Nat Nanotechnol 7:169–173

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Sugiyama H (2006) Formation of the G-quadruplex and i-motif structures in retinoblastoma susceptibility genes (Rb). Nucleic Acids Res 34:949–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Sato H, Sannohe Y et al (2008) Stable lariat formation based on a G-quadruplex scaffold. J Am Chem Soc 130:16470–16471

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Endo M, Hidaka K et al (2012) Photo-controllable DNA origami nanostructures assembling into predesigned multiorientational patterns. J Am Chem Soc 134:20645–20653

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Endo M, Suzuki Y et al (2014) Direct observation of the dual-switching behaviors corresponding to the state transition in a DNA nanoframe. Chem Commun 50:4211–4213

    Article  CAS  Google Scholar 

  • You M, Chen Y, Zhang X et al (2012) An autonomous and controllable light-driven DNA walking device. Angew Chem Int Ed 51:2457–2460

    Article  CAS  Google Scholar 

  • Youngblood B, Reich NO (2006) Conformational transitions as determinants of specificity for the DNA methyltransferase EcoRI. J Biol Chem 281:26821–26831

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Endo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Endo, M. (2016). Single-Molecule Visualization of Biomolecules in the Designed DNA Origami Nanostructures Using High-Speed Atomic Force Microscopy. In: Jurga, S., Erdmann (Deceased), V., Barciszewski, J. (eds) Modified Nucleic Acids in Biology and Medicine. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-34175-0_17

Download citation

Publish with us

Policies and ethics