Skip to main content

Sniffing Out a Role for PACAP in the Olfactory System

  • Chapter
  • First Online:
Pituitary Adenylate Cyclase Activating Polypeptide — PACAP

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 11))

  • 559 Accesses

Abstract

In mammals, the olfactory system comprises a main olfactory epithelium containing olfactory sensory neurons located in the dorsal recesses of the nasal cavity, olfactory bulbs, and olfactory cortex which includes a number of discrete brain regions such as those associated with emotions (lateral amygdala) and memory (entorhinal cortex). An accessory olfactory system of vomeronasal organ and accessory olfactory bulbs connect to the hypothalamic/gonadotrophic axis. PACAP and the high affinity PAC1 receptor are found at high levels throughout these pathways. Recent studies in the developing olfactory epithelium show that functional PACAP signaling is important for proliferation and neuroprotection. Physiological studies of rodent olfactory epithelial slices reveal that PACAP elicits increases in intracellular calcium in olfactory sensory neurons and protects olfactory slices and primary cultures from injury-related cell death. PACAP is also found in the olfactory ensheathing cells that wrap the sensory axons as they leave the olfactory epithelium to synapse in the olfactory bulb. Within olfactory bulb, PACAP is expressed in mitral and tufted cells, which synapse with PAC1 receptor-expressing granule cells and provide the output to higher olfactory centers. Importantly, PACAP promotes release of glutamate and GABA in the developing olfactory bulb network. Physiological studies using PACAP and GABA stimulation show that as early as postnatal days 2–5, the responses of subsets of olfactory granule cells shift from immature to mature profiles. These interesting and robust effects of PACAP make the olfactory system an excellent model for further studies of the roles of PACAP in neurogenesis, neuromodulation, neuroprotection, and neuroregeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graziadei PP, Graziadei GA. Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. J Neurocytol. 1979;8:1–18.

    Article  CAS  PubMed  Google Scholar 

  2. Hashimoto H, Ishihara T, Shigemoto R, Mori K, Nagata S. Molecular cloning and tissue distribution of a receptor for pituitary adenylate cyclase-activating polypeptide. Neuron. 1993;11:333–42.

    Article  CAS  PubMed  Google Scholar 

  3. Hashimoto H, Nogi H, Mori K, Ohishi H, Shigemoto R, Yamamoto K, et al. Distribution of the mRNA for a pituitary adenylate cyclase-activating polypeptide receptor in the rat brain: an in situ hybridization study. J Comp Neurol. 1996;371:567–77.

    Article  CAS  PubMed  Google Scholar 

  4. Cardoso JCR, Pinto VC, Vieira FA, Clark MS, Power DM. Evolution of secretin family GPCR members in the metazoa. BMC Evol Biol. 2006;6:108.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ng SYL, Chow BKC, Kasamatsu J, Kasahara M, Lee LTO. Agnathan VIP, PACAP and their receptors: ancestral origins of today’s highly diversified forms. PLoS One. 2012;7:e44691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sherwood N, Krueckl SL, McRory JE. The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev. 2000;21:619–70.

    CAS  PubMed  Google Scholar 

  7. Hu Z, Lelievre V, Rodriguez WI, Cheng JW, Waschek JA. Comparative distributions of pituitary adenylyl cyclase-activating polypeptide and its selective type I receptor mRNA in the frog (Xenopus laevis) brain. Regul Pept. 2002;109:15–26.

    Article  CAS  PubMed  Google Scholar 

  8. Mathieu M, Girosi L, Vallarino M, Tagliafierro G. PACAP in developing sensory and peripheral organs of the zebrafish, Danio rerio. Eur J Histochem. 2005;49:167–78.

    CAS  PubMed  Google Scholar 

  9. Peeters K, Gerets HH, Princen K, Vandesande F. Molecular cloning and expression of a chicken pituitary adenylate cyclase-activating polypeptide receptor. Mol Brain Res. 1999;71:244–55.

    Article  CAS  PubMed  Google Scholar 

  10. Valiante S, Prisco M, Capaldo A, Zambrano I, De Falco M, Andreuccetti P, et al. Molecular characterization and gene expression of the pituitary adenylate cyclase-activating polypeptide (PACAP) in the lizard brain. Brain Res. 2007;1127:66–75.

    Article  CAS  PubMed  Google Scholar 

  11. Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, et al. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun. 1989;164:567–74.

    Article  CAS  PubMed  Google Scholar 

  12. Kimura C, Ohkubo S, Ogi K, Hosoya M, Itoh Y, Onda H, et al. A novel peptide which stimulates adenylate cyclase: molecular cloning and characterization of the ovine and human cDNAs. Biochem Biophys Res Commun. 1990;166:81–9.

    Article  CAS  PubMed  Google Scholar 

  13. McCulloch DA, MacKenzie CJ, Johnson MS, Robertson DN, Holland PJ, Ronaldson E, et al. Additional signals from VPAC/PAC family receptors. Biochem Soc Trans. 2002;30:441–6.

    Article  CAS  PubMed  Google Scholar 

  14. Blechman J, Levkowitz G. Alternative splicing of the pituitary adenylate cyclase-activating polypeptide receptor PAC1: mechanisms of fine tuning of brain activity. Front Endocrinol (Lausanne). 2013;4:1–19.

    Google Scholar 

  15. Vaudry D, Falluel-morel A, Bourgault S, Basille M, Burel D, Wurtz O, et al. Pituitary adenylate cyclase-activating polypeptide and its receptors : 20 years after the discovery. Pept Res. 2009;61:283–357.

    CAS  Google Scholar 

  16. Hansel DE, May V, Eipper BA, Ronnett GV. Pituitary adenylyl cyclase-activating peptides and alpha-amidation in olfactory neurogenesis and neuronal survival in vitro. J Neurosci. 2001;21:4625–36.

    CAS  PubMed  Google Scholar 

  17. Kanekar S, Gandham M, Lucero MT. PACAP protects against TNFα-induced cell death in olfactory epithelium and olfactory placodal cell lines. Mol Cell Neurosci. 2010;45:345–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peeters K, Gerets HHJ, Arckens L, Vandesande F. Distribution of pituitary adenylate cyclase-activating polypeptide and pituitary adenylate cyclase-activating polypeptide type I receptor mRNA in the chicken brain. J Comp Neurol. 2000;423:66–82.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou CJ, Kikuyama S, Shibanuma M, Hirabayashi T, Nakajo S, Arimura A, et al. Cellular distribution of the splice variants of the receptor for pituitary adenylate cyclase-activating polypeptide (PAC1-R) in the rat brain by in situ RT-PCR. Mol Brain Res. 2000;75:150–8.

    Article  CAS  PubMed  Google Scholar 

  20. Getchell ML, Getchell TV. Fine structural aspects of secretion and extrinsic innervation in the olfactory mucosa. Microsc Res Tech. 1992;23:111–27.

    Article  CAS  PubMed  Google Scholar 

  21. Lucero MT, Squires A. Catecholamine concentrations in rat nasal mucus are modulated by trigeminal stimulation of the nasal cavity. Brain Res. 1998;807:234–6.

    Article  CAS  PubMed  Google Scholar 

  22. Hegg CC, Lucero MT. Dopamine reduces odor- and elevated-K(+)-induced calcium responses in mouse olfactory receptor neurons in situ. J Neurophysiol. 2004;91:1492–9.

    Article  CAS  PubMed  Google Scholar 

  23. Lucero MT. Peripheral modulation of smell: fact or fiction? Semin Cell Dev Biol. 2013;24:58–70.

    Article  PubMed  Google Scholar 

  24. Vargas G, Lucero MT. Dopamine modulates inwardly rectifying hyperpolarization-activated current (I H) in cultured rat olfactory receptor neurons. J Neurophysiol. 1999;81:149–58.

    CAS  PubMed  Google Scholar 

  25. Chamero P, Leinders-Zufall T, Zufall F. From genes to social communication: molecular sensing by the vomeronasal organ. Trends Neurosci. 2012;35:597–606.

    Article  CAS  PubMed  Google Scholar 

  26. Eisthen HL. Phylogeny of the vomeronasal system and of receptor cell types in the olfactory and vomeronasal epithelia of vertebrates. Microsc Res Tech. 1992;23:1–21.

    Article  CAS  PubMed  Google Scholar 

  27. Kelliher KR. The combined role of the main olfactory and vomeronasal systems in social communication in mammals. Horm Behav. 2007;52:561–70.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Keller M, Baum MJ, Brock O, Brennan PA, Bakker J. The main and the accessory olfactory systems interact in the control of mate recognition and sexual behavior. Behav Brain Res. 2009;200:268–76.

    Article  PubMed  Google Scholar 

  29. Restrepo D, Arellano J, Oliva AM, Schaefer ML, Lin W. Emerging views on the distinct but related roles of the main and accessory olfactory systems in responsiveness to chemosensory signals in mice. Horm Behav. 2004;46:247–56.

    Article  CAS  PubMed  Google Scholar 

  30. Spehr M, Kelliher KR, Li X-H, Boehm T, Leinders-Zufall T, Zufall F. Essential role of the main olfactory system in social recognition of major histocompatibility complex peptide ligands. J Neurosci. 2006;26:1961–70.

    Article  CAS  PubMed  Google Scholar 

  31. Spehr M, Spehr J, Ukhanov K, Kelliher KR, Leinders-Zufall T, Zufall F. Parallel processing of social signals by the mammalian main and accessory olfactory systems. In: Cellular and molecular life sciences. 2006; p. 1476–84.

    Google Scholar 

  32. Au E, Roskams AJ. Olfactory ensheathing cells of the lamina propria in vivo and in vitro. Glia. 2003;41:224–36.

    Article  PubMed  Google Scholar 

  33. Han P, Lucero MT. Pituitary adenylate cyclase activating polypeptide reduces A-type K+ currents and caspase activity in cultured adult mouse olfactory neurons. Neuroscience. 2005;134:745–56.

    Article  CAS  PubMed  Google Scholar 

  34. Hegg CC, Au E, Roskams AJ, Lucero MT. PACAP is present in the olfactory system and evokes calcium transients in olfactory receptor neurons. J Neurophysiol. 2003;90:2711–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Han P, Lucero MT. Pituitary adenylate cyclase activating polypeptide reduces expression of Kv1.4 and Kv4.2 subunits underlying A-type K+ current in adult mouse olfactory neuroepithelia. Neuroscience. 2006;138:411–9.

    Article  CAS  PubMed  Google Scholar 

  36. Herbert RP, Harris J, Chong K, Chapman J, West AK, Chuah M. Cytokines and olfactory bulb microglia in response to bacterial challenge in the compromised primary olfactory pathway. J Neuroinflammation. 2012;9:109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stamm ML. In vivo characterization of pituitary adenylate cyclase-activating polypeptide in mouse olfactory epithelium. Univ Utah. 2011.

    Google Scholar 

  38. Carson C, Murdoch B, Roskams AJ. Notch 2 and Notch 1/3 segregate to neuronal and glial lineages of the developing olfactory epithelium. Dev Dyn. 2006;235:1678–88.

    Article  CAS  PubMed  Google Scholar 

  39. Elmas C, Erdoğan D, Ozoğul C. Expression of growth factors in fetal human olfactory mucosa during development. Growth Dev Aging. 2003;67:11–25.

    CAS  PubMed  Google Scholar 

  40. Hansel DE, Eipper BA, Ronnett GV. Regulation of olfactory neurogenesis by amidated neuropeptides. J Neurosci Res. 2001;66:1–7.

    Article  CAS  PubMed  Google Scholar 

  41. Mackay-Sim A, Chuah MI. Neurotrophic factors in the primary olfactory pathway. Prog Neurobiol. 2000;62:527–59.

    Article  CAS  Google Scholar 

  42. Marks C, Belluscio L, Ibáñez CF. Critical role of GFRα1 in the development and function of the main olfactory system. J Neurosci. 2012;32:17306–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Genter MB, Deamer NJ, Blake BL, Wesley DS, Levi PE. Olfactory toxicity of methimazole: dose-response and structure-activity studies and characterization of flavin-containing monooxygenase activity in the Long-Evans rat olfactory mucosa. Toxicol Pathol. 1995;23:477–86.

    Article  CAS  PubMed  Google Scholar 

  44. Schwob JE, Youngentob SL, Mezza RC. Reconstitution of the rat olfactory epithelium after methyl bromide-induced lesion. J Comp Neurol. 1995;359:15–37.

    Article  CAS  PubMed  Google Scholar 

  45. Graziadei PP, Levine RR, Graziadei GA. Regeneration of olfactory axons and synapse formation in the forebrain after bulbectomy in neonatal mice. Proc Natl Acad Sci. 1978;75:5230–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lledo P-M, Gheusi G, Vincent J-D. Information processing in the mammalian olfactory system. Physiol Rev. 2005;85:281–317.

    Article  PubMed  Google Scholar 

  47. Shepherd GM, Chen WR, Greer CA. Olfactory bulb. In: Shepherd GM, editor. The synaptic organization of the brain. New York: Oxford University Press; 2004. p. 165–216.

    Chapter  Google Scholar 

  48. Alexandre D, Vaudry H, Jégou S, Anouar Y. Structure and distribution of the mRNAs encoding pituitary adenylate cyclase-activating polypeptide and growth hormone-releasing hormone-like peptide in the frog, Rana ridibunda. J Comp Neurol. 2000;421:234–46.

    Article  CAS  PubMed  Google Scholar 

  49. Allen Developing Mouse Brain Atlas [Online]. 2015. http://developingmouse.brain-map.org.

  50. Jaworski DM, Proctor MD. Developmental regulation of pituitary adenylate cyclase-activating polypeptide and PAC1 receptor mRNA expression in the rat central nervous system. Dev Brain Res. 2000;120:27–39.

    Article  CAS  Google Scholar 

  51. Shioda S, Shuto Y, Somogyvari-Vigh A, Legradi G, Onda H, Coy DH, et al. Localization and gene expression of the receptor for pituitary adenylate cyclase-activating polypeptide in the rat brain. Neurosci Res. 1997;28:345–54.

    Article  CAS  PubMed  Google Scholar 

  52. Hattori S, Takao K, Tanda K, Toyama K, Shintani N, Baba A, et al. Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP) knockout mice. Front Behav Neurosci. 2012;6:1–18.

    Article  Google Scholar 

  53. Nicot A, Otto T, Brabet P, DiCicco-Bloom EM. Altered social behavior in pituitary adenylate cyclase-activating polypeptide type I receptor-deficient mice. J Neurosci. 2004;24:8786–95.

    Article  CAS  PubMed  Google Scholar 

  54. Ressler KJ, Mercer KB, Bradley B, Jovanovic T, Mahan A, Kerley K, et al. Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature. 2011;470:492–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gaszner B, Kormos V, Kozicz T, Hashimoto H, Reglodi D, Helyes Z. The behavioral phenotype of pituitary adenylate-cyclase activating polypeptide-deficient mice in anxiety and depression tests is accompanied by blunted c-Fos expression in the bed nucleus of the stria terminalis, central projecting Edinger-Westphal nucleus. Neuroscience. 2012;202:283–99.

    Article  CAS  PubMed  Google Scholar 

  56. Matsuno R, Ohtaki H, Nakamachi T, Watanabe J, Yofu S, Hayashi D, et al. Distribution and localization of pituitary adenylate cyclase-activating polypeptide-specific receptor (PAC1R) in the rostral migratory stream of the infant mouse brain. Regul Pept. 2008;145:80–7.

    Article  CAS  PubMed  Google Scholar 

  57. Cameron DB, Raoult E, Galas L, Jiang Y, Lee K, Hu T, et al. Role of PACAP in controlling granule cell migration. Cerebellum. 2009;8:433–40.

    Article  CAS  PubMed  Google Scholar 

  58. Falluel-Morel A, Vaudry D, Aubert N, Galas L, Benard M, Basille M, et al. PACAP and ceramides exert opposite effects on migration, neurite outgrowth, and cytoskeleton remodeling. Ann N Y Acad Sci. 2006;1070:265–70.

    Article  CAS  PubMed  Google Scholar 

  59. Olianas MC, Onali P. Stimulation of guanosine 5’-O-(3-[35S] thiotriphosphate) binding by cholinergic muscarinic receptors in membranes of rat olfactory bulb. J Neurochem. 1996;67:2549–56.

    Article  CAS  PubMed  Google Scholar 

  60. Olianas MC, Onali P. Impairment of muscarinic stimulation of adenylyl cyclase by heparin in rat olfactory bulb. Life Sci. 1997;61:515–22.

    Article  CAS  PubMed  Google Scholar 

  61. Olianas MC, Onali P. GABA(B) receptor-mediated stimulation of adenylyl cyclase activity in membranes of rat olfactory bulb. Br J Pharmacol. 1999;126:657–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Irwin M, Greig A, Tvrdik P, Lucero MT. PACAP modulation of calcium ion activity in developing granule cells of the neonatal mouse olfactory bulb. J Neurophysiol. 2015;113:1234–48.

    Article  CAS  PubMed  Google Scholar 

  63. Dzhala VI, Kuchibhotla KV, Glykys JC, Kahle KT, Swiercz WB, Feng G, et al. Progressive NKCC1-dependent neuronal chloride accumulation during neonatal seizures. J Neurosci. 2010;30:11745–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mejia-Gervacio S, Murray K, Lledo P-M. NKCC1 controls GABAergic signaling and neuroblast migration in the postnatal forebrain. Neural Dev. 2011;6:4.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Cameron DB, Galas L, Jiang Y, Raoult E, Vaudry D, Komuro H. Cerebellar cortical-layer-specific control of neuronal migration by pituitary adenylate cyclase-activating polypeptide. Neuroscience. 2007;146:697–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Michel S, Itri J, Han JH, Gniotczynski K, Colwell CS. Regulation of glutamatergic signalling by PACAP in the mammalian suprachiasmatic nucleus. BMC Neurosci. 2006;7:15.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Colwell CS, Michel S, Itri J, Rodriguez W, Tam J, Lelièvre V, et al. Selective deficits in the circadian light response in mice lacking PACAP. Am J Physiol Regul Integr Comp Physiol. 2004;287:R1194–201.

    Article  CAS  PubMed  Google Scholar 

  68. Faluhelyi N, Reglodi D, Csernus V. Development of the circadian melatonin rhythm and its responsiveness to PACAP in the embryonic chicken pineal gland. Ann N Y Acad Sci. 2005;1040:305–9.

    Article  CAS  PubMed  Google Scholar 

  69. Hannibal J. Roles of PACAP-containing retinal ganglion cells in circadian timing. Int Rev Cytol. 2006;251:1–39.

    Article  CAS  PubMed  Google Scholar 

  70. Kawaguchi C, Tanaka K, Isojima Y, Shintani N, Hashimoto H, Baba A, et al. Changes in light-induced phase shift of circadian rhythm in mice lacking PACAP. Biochem Biophys Res Commun. 2003;310:169–75.

    Article  CAS  PubMed  Google Scholar 

  71. Mertens I, Husson SJ, Janssen T, Lindemans M, Schoofs L. PACAP and PDF signaling in the regulation of mammalian and insect circadian rhythms. Peptides. 2007;28:1775–83.

    Article  CAS  PubMed  Google Scholar 

  72. Nagy AD, Csernus VJ. The role of PACAP in the control of circadian expression of clock genes in the chicken pineal gland. Peptides. 2007;28:1767–74.

    Article  CAS  PubMed  Google Scholar 

  73. Racz B, Horvath G, Faluhelyi N, Nagy AD, Tamas A, Kiss P, et al. Effects of PACAP on the circadian changes of signaling pathways in chicken pinealocytes. J Mol Neurosci. 2008;36:220–6.

    Article  CAS  PubMed  Google Scholar 

  74. Manzini I, Brase C, Chen T-W, Schild D. Response profiles to amino acid odorants of olfactory glomeruli in larval Xenopus laevis. J Physiol. 2007;581:567–79.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zelles T, Boyd JD, Hardy AB, Delaney KF. Branch-specific Ca2+ influx from Na+-dependent dendritic spikes in olfactory granule cells. J Neurosci. 2006;26:30–40.

    Article  CAS  PubMed  Google Scholar 

  76. Nikonov AA, Caprio J. Electrophysiological evidence for a chemotopy of biologically relevant odors in the olfactory bulb of the channel catfish. J Neurophysiol. 2001;86:1869–76.

    CAS  PubMed  Google Scholar 

  77. Edwards JG, Michel WC. Pharmacological characterization of ionotropic glutamate receptors in the zebrafish olfactory bulb. Neuroscience. 2003;122:1037–47.

    Article  CAS  PubMed  Google Scholar 

  78. Bhalla US, Bower JM. Multiday recordings from olfactory bulb neurons in awake freely moving rats: spatially and temporally organized variability in odorant response properties. J Comput Neurosci. 1997;4:221–56.

    Article  CAS  PubMed  Google Scholar 

  79. Homma R, Kovalchuk Y, Konnerth A, Cohen LB, Garaschuk O. In vivo functional properties of juxtaglomerular neurons in the mouse olfactory bulb. Front Neural Circuits. 2013;7:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rubin BD, Katz LC. Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron. 1999;23:499–511.

    Article  CAS  PubMed  Google Scholar 

  81. Wachowiak M, Economo MN, Díaz-Quesada M, Brunert D, Wesson DW, White JA, et al. Optical dissection of odor information processing in vivo using GCaMPs expressed in specified cell types of the olfactory bulb. Ann Intern Med. 2013;158:5285–8300.

    Google Scholar 

  82. Janotová K, Stopka P. Mechanisms of chemical communication: the role of major urinary proteins. Folia Zool. 2009;58:41–55.

    Google Scholar 

  83. Dey S, Chamero P, Pru JK, Chien M-S, Ibarra-Soria X, Spencer KR, et al. Cyclic regulation of sensory perception by a female hormone alters behavior. Cell. 2015;161:1334–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Petersen B, Buchfelder M, Fahlbusch R, Adams EF. Pituitary adenylate cyclase-activating polypeptide directly stimulates LH and FSH secretion by human pituitary gonadotrophinomas. Exp Clin Endocrinol Diabetes. 1996;104:250–5.

    Article  CAS  PubMed  Google Scholar 

  85. Kotani E, Usuki S, Kubo T. Effect of pituitary adenylate cyclase-activating polypeptide (PACAP) on progestin biosynthesis in cultured granulosa cells from rat ovary and expression of mRNA encoding PACAP type IA receptor. J Reprod Fertil. 1998;112:107–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary T. Lucero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lucero, M.T. (2016). Sniffing Out a Role for PACAP in the Olfactory System. In: Reglodi, D., Tamas, A. (eds) Pituitary Adenylate Cyclase Activating Polypeptide — PACAP. Current Topics in Neurotoxicity, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-35135-3_29

Download citation

Publish with us

Policies and ethics