Skip to main content

The Pharmacophoric Determinants of PACAP

  • Chapter
  • First Online:
Pituitary Adenylate Cyclase Activating Polypeptide — PACAP

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 11))

Abstract

The pituitary adenylate cyclase-activating polypeptide (PACAP) is a hormone that belongs to the secretin/glucagon/growth hormone-releasing hormone (GHRH)/vasoactive intestinal peptide (VIP) superfamily. It shows a widespread distribution and a large array of physiological actions. Accordingly, this peptide is linked to various pathological conditions and PACAP-derived drugs are promising compounds for the development of potent therapies. The effects of PACAP are mediated through three types of class B-G protein-coupled receptors identified as PAC1, VPAC1, and VPAC2. PACAP exhibits a larger affinity for PAC1 than VIP, whereas VPAC1 and VPAC2 are equally recognized by both ligands. The three receptors possess distinct pharmacophoric requirements and in particular, residues His1, Asp3, Phe6, Thr7, Tyr22, and Leu23, as well as structural motifs such as a highly stabilized α-helix and an N-terminal β-coil abutted to an N-capping-like arrangement, would be crucial for receptor selectivity. Moreover, PACAP is vulnerable to proteolysis and sites of enzymatic degradation were identified to develop metabolically stable compounds. The present review summarizes structure–activity relationships of PACAP and makes an overview of the conformational features of the molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Aad:

l-α-aminoadipic acid

Aca:

Aminocaproic acid

BBB:

Blood–brain barrier

Bip:

l-biphenylalanine

Bpa:

p-benzoyl-l-phenylalanine

CT:

Calcitonin

Disc:

l-1,3-dihydro-2H-isoindole carboxylic acid

GLP-1:

Glucagon-like peptide-1

GPCR(s):

G protein-coupled receptor(s)

Hyp:

Hydroxyproline

Iaa:

4-Imidazole acetic acid

Iac:

4-Imidazole acrylic acid

R-IBTM:

2(R)-amino-3-oxohexahydroindolizino[8,7-b]indole-5(R)-carboxylic acid

S-IBTM:

2(S)-amino-3-oxohexahydroindolizino[8,7-b]indole-5(S)-carboxylic acid

Ind:

l-indoline-2-carboxylic acid

Nal:

l-naphthylalanine

Nle:

l-norleucine

NOESY:

Nuclear Overhauser Effect spectroscopy

PACAP:

Pituitary adenylate cyclase-activating polypeptide

PACAP27:

27-amino acid isoform of PACAP

PACAP38:

38-amino acid isoform of PACAP

PAC1:

Pituitary adenylate cyclase-activating polypeptide type 1 receptor

Phe(p-I):

Para-iodo-l-phenylalanine

PTH:

Parathyroid hormone

PTS-6:

Peptide transport system-6

SAR:

Structure–activity relationships

TFE:

Trifluoroethanol

Tic:

l-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid

Tiq:

l-tetrahydroisoquinoline-1-carboxylic acid

VIP:

Vasoactive intestinal peptide

VPAC1:

VIP/PACAP type 1 receptor

VPAC2:

VIP/PACAP type 2 receptor

References

  1. Reglodi D, Kiss P, Lubics A, Tamas A. Review on the protective effects of PACAP in models of neurodegenerative diseases in vitro and in vivo. Curr Pharm Des. 2011;17:962–72.

    Article  CAS  PubMed  Google Scholar 

  2. Reglodi D, Tamas A, Lubics A, Szalontay L, Lengvari I. Morphological and functional effects of PACAP in 6-hydroxydopamine-induced lesion of the substantia nigra in rats. Regul Pept. 2004;123:85–94.

    Article  CAS  PubMed  Google Scholar 

  3. Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, et al. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev. 2009;61:283–357.

    Article  CAS  PubMed  Google Scholar 

  4. Wang G, Pan J, Tan YY, Sun XK, Zhang YF, Zhou HY, et al. Neuroprotective effects of PACAP27 in mice model of Parkinson's disease involved in the modulation of K(ATP) subunits and D2 receptors in the striatum. Neuropeptides. 2008;42:267–76.

    Article  CAS  PubMed  Google Scholar 

  5. Chen Y, Samal B, Hamelink CR, Xiang CC, Chen Y, Chen M, et al. Neuroprotection by endogenous and exogenous PACAP following stroke. Regul Pept. 2006;137:4–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dejda A, Seaborn T, Bourgault S, Touzani O, Fournier A, Vaudry H, et al. PACAP and a novel stable analog protect rat brain from ischemia: insight into the mechanisms of action. Peptides. 2011;32:1207–16.

    Article  CAS  PubMed  Google Scholar 

  7. Reglodi D, Somogyvari-Vigh A, Vigh S, Kozicz T, Arimura A. Delayed systemic administration of PACAP38 is neuroprotective in transient middle cerebral artery occlusion in the rat. Stroke. 2000;31:1411–7.

    Article  CAS  PubMed  Google Scholar 

  8. Reglodi D, Tamas A, Somogyvari-Vigh A, Szanto Z, Kertes E, Lenard L, et al. Effects of pretreatment with PACAP on the infarct size and functional outcome in rat permanent focal cerebral ischemia. Peptides. 2002;23:2227–34.

    Article  CAS  PubMed  Google Scholar 

  9. Hessenius C, Bader M, Meinhold H, Bohmig M, Faiss S, Reubi JC, et al. Vasoactive intestinal peptide receptor scintigraphy in patients with pancreatic adenocarcinomas or neuroendocrine tumours. Eur J Nucl Med. 2000;27:1684–93.

    Article  CAS  PubMed  Google Scholar 

  10. Leyton J, Gozes Y, Pisegna J, Coy D, Purdom S, Casibang M, et al. PACAP(6-38) is a PACAP receptor antagonist for breast cancer cells. Breast Cancer Res Treat. 1999;56(2):177–86.

    Article  CAS  PubMed  Google Scholar 

  11. Moretti C, Mammi C, Frajese GV, Mariani S, Gnessi L, Arizzi M, et al. PACAP and type I PACAP receptors in human prostate cancer tissue. Ann N Y Acad Sci. 2006;1070:440–9.

    Article  CAS  PubMed  Google Scholar 

  12. Reubi JC, Laderach U, Waser B, Gebbers JO, Robberecht P, Laissue JA. Vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide receptor subtypes in human tumors and their tissues of origin. Cancer Res. 2000;60:3105–12.

    CAS  PubMed  Google Scholar 

  13. Banki E, Kovacs K, Nagy D, Juhasz T, Degrell P, Csanaky K, et al. Molecular mechanisms underlying the nephroprotective effects of PACAP in diabetes. J Mol Neurosci. 2014;54:300–9.

    Article  CAS  PubMed  Google Scholar 

  14. Sanlioglu AD, Karacay B, Balci MK, Griffith TS, Sanlioglu S. Therapeutic potential of VIP vs PACAP in diabetes. J Mol Endocrinol. 2012;49:R157–67.

    Article  CAS  PubMed  Google Scholar 

  15. Hoare SR. Mechanisms of peptide and nonpeptide ligand binding to class B G-protein-coupled receptors. Drug Discov Today. 2005;10:417–27.

    Article  CAS  PubMed  Google Scholar 

  16. Bourgault S, Chatenet D, Wurtz O, Doan ND, Leprince J, Vaudry H, et al. Strategies to convert PACAP from a hypophysiotropic neurohormone into a neuroprotective drug. Curr Pharm Des. 2011;17:1002–24.

    Article  CAS  PubMed  Google Scholar 

  17. Bourgault S, Vaudry D, Dejda A, Doan ND, Vaudry H, Fournier A. Pituitary adenylate cyclase-activating polypeptide: focus on structure-activity relationships of a neuroprotective peptide. Curr Med Chem. 2009;16:4462–80.

    Article  CAS  PubMed  Google Scholar 

  18. Harmar AJ, Fahrenkrug J, Gozes I, Laburthe M, May V, Pisegna JR, et al. Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br J Pharmacol. 2012;166:4–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Laburthe M, Couvineau A. Molecular pharmacology and structure of VPAC receptors for VIP and PACAP. Regul Pept. 2002;108:165–73.

    Article  CAS  PubMed  Google Scholar 

  20. Laburthe M, Couvineau A, Tan V. Class II G protein-coupled receptors for VIP and PACAP: structure, models of activation and pharmacology. Peptides. 2007;28:1631–9.

    Article  CAS  PubMed  Google Scholar 

  21. Neumann JM, Couvineau A, Murail S, Lacapère JJ, Jamin N, Laburthe M. Class-B GPCR activation: is ligand helix-capping the key? Trends Biochem Sci. 2008;33:314–9.

    Google Scholar 

  22. Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, et al. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun. 1989;164:567–74.

    Article  CAS  PubMed  Google Scholar 

  23. Miyata A, Jiang L, Dahl RD, Kitada C, Kubo K, Fujino M, et al. Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun. 1990;170:643–8.

    Article  CAS  PubMed  Google Scholar 

  24. Sherwood NM, Krueckl SL, McRory JE. The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev. 2000;21:619–70.

    CAS  PubMed  Google Scholar 

  25. Couvineau A, Laburthe M. VPAC receptors: structure, molecular pharmacology and interaction with accessory proteins. Br J Pharmacol. 2012;166:42–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dickson L, Finlayson K. VPAC and PAC receptors: from ligands to function. Pharmacol Ther. 2009;121:294–316.

    Article  CAS  PubMed  Google Scholar 

  27. Harmar AJ, Arimura A, Gozes I, Journot L, Laburthe M, Pisegna JR, et al. International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol Rev. 1998;50:265–70.

    CAS  PubMed  Google Scholar 

  28. Robberecht P, Gourlet P, De Neef P, Woussen-Colle MC, Vandermeers-Piret MC, Vandermeers A, et al. Structural requirements for the occupancy of pituitary adenylate-cyclase-activating-peptide (PACAP) receptors and adenylate cyclase activation in human neuroblastoma NB-OK-1 cell membranes. Discovery of PACAP(6-38) as a potent antagonist. Eur J Biochem. 1992;207:239–46.

    Article  CAS  PubMed  Google Scholar 

  29. Robberecht P, Gourlet P, De Neef P, Woussen-Colle MC, Vandermeers-Piret MC, Vandermeers A, et al. Receptor occupancy and adenylate cyclase activation in AR 4-2J rat pancreatic acinar cell membranes by analogs of pituitary adenylate cyclase-activating peptides amino-terminally shortened or modified at position 1, 2, 3, 20, or 21. Mol Pharmacol. 1992;42:347–55.

    CAS  PubMed  Google Scholar 

  30. Gourlet P, Woussen-Colle MC, Robberecht P, de Neef P, Cauvin A, Vandermeers-Piret MC, et al. Structural requirements for the binding of the pituitary adenylate-cyclase-activating peptide to receptors and adenylate-cyclase activation in pancreatic and neuronal membranes. Eur J Biochem. 1991;195:535–41.

    Article  CAS  PubMed  Google Scholar 

  31. Hou X, Vandermeers A, Gourlet P, Vandermeers-Piret MC, Robberecht P. Structural requirements for the occupancy of rat brain PACAP receptors and adenylate cyclase activation. Neuropharmacology. 1994;33:1189–95.

    Article  CAS  PubMed  Google Scholar 

  32. Gourlet P, Vandermeers A, Vandermeers-Piret MC, Rathe J, De Neef P, Robberecht P. Fragments of pituitary adenylate cyclase activating polypeptide discriminate between type I and II recombinant receptors. Eur J Pharmacol. 1995;287:7–11.

    Article  CAS  PubMed  Google Scholar 

  33. Ichinose M, Asai M, Imai K, Sawada M. Enhancement of phagocytosis in mouse macrophages by pituitary adenylate cyclase activating polypeptide (PACAP) and related peptides. Immunopharmacology. 1995;30:217–24.

    Article  CAS  PubMed  Google Scholar 

  34. Reglodi D, Borzsei R, Bagoly T, Boronkai A, Racz B, Tamas A, et al. Agonistic behavior of PACAP6-38 on sensory nerve terminals and cytotrophoblast cells. J Mol Neurosci. 2008;36:270–8.

    Article  CAS  PubMed  Google Scholar 

  35. Walker CS, Sundrum T, Hay DL. PACAP receptor pharmacology and agonist bias: analysis in primary neurons and glia from the trigeminal ganglia and transfected cells. Br J Pharmacol. 2014;171:1521–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vandermeers A, Vandenborre S, Hou X, de Neef P, Robberecht P, Vandermeers-Piret MC, et al. Antagonistic properties are shifted back to agonistic properties by further N-terminal shortening of pituitary adenylate-cyclase-activating peptides in human neuroblastoma NB-OK-1 cell membranes. Eur J Biochem. 1992;208:815–9.

    Article  CAS  PubMed  Google Scholar 

  37. Gourlet P, Vandermeers A, Vandermeers-Piret MC, De Neef P, Robberecht P. Addition of the (28-38) peptide sequence of PACAP to the VIP sequence modifies peptide selectivity and efficacy. Int J Pept Protein Res. 1996;48:391–6.

    Article  CAS  PubMed  Google Scholar 

  38. Tams JW, Johnsen AH, Fahrenkrug J. Identification of pituitary adenylate cyclase-activating polypeptide1-38-binding factor in human plasma, as ceruloplasmin. Biochem J. 1999;341(Pt 2):271–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Banks WA, Kastin AJ, Komaki G, Arimura A. Passage of pituitary adenylate cyclase activating polypeptide1-27 and pituitary adenylate cyclase activating polypeptide1-38 across the blood-brain barrier. J Pharmacol Exp Ther. 1993;267:690–6.

    CAS  PubMed  Google Scholar 

  40. Bourgault S, Vaudry D, Botia B, Couvineau A, Laburthe M, Vaudry H, et al. Novel stable PACAP analogs with potent activity towards the PAC1 receptor. Peptides. 2008;29:919–32.

    Article  CAS  PubMed  Google Scholar 

  41. Gourlet P, Vandermeers A, Vandermeers-Piret MC, Rathe J, De Neef P, Robberecht P. C-terminally shortened pituitary adenylate cyclase-activating peptides (PACAP) discriminate PACAP I, PACAP II-VIP1 and PACAP II-VIP2 recombinant receptors. Regul Pept. 1996;62:125–30.

    Article  CAS  PubMed  Google Scholar 

  42. Bourgault S, Vaudry D, Guilhaudis L, Raoult E, Couvineau A, Laburthe M, et al. Biological and structural analysis of truncated analogs of PACAP27. J Mol Neurosci. 2008;36:260–9.

    Article  CAS  PubMed  Google Scholar 

  43. Vaudry D, Gonzalez BJ, Basille M, Yon L, Fournier A, Vaudry H. Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol Rev. 2000;52:269–324.

    CAS  PubMed  Google Scholar 

  44. Yung SL, Dela Cruz F, Hamren S, Zhu J, Tsutsumi M, Bloom JW, et al. Generation of highly selective VPAC2 receptor agonists by high throughput mutagenesis of vasoactive intestinal peptide and pituitary adenylate cyclase-activating peptide. J Biol Chem. 2003;278:10273–81.

    Article  CAS  PubMed  Google Scholar 

  45. Nicole P, Lins L, Rouyer-Fessard C, Drouot C, Fulcrand P, Thomas A, et al. Identification of key residues for interaction of vasoactive intestinal peptide with human VPAC1 and VPAC2 receptors and development of a highly selective VPAC1 receptor agonist. Alanine scanning and molecular modeling of the peptide. J Biol Chem. 2000;275:24003–12.

    Article  CAS  PubMed  Google Scholar 

  46. Bourgault S, Vaudry D, Segalas-Milazzo I, Guilhaudis L, Couvineau A, Laburthe M, et al. Molecular and conformational determinants of pituitary adenylate cyclase-activating polypeptide (PACAP) for activation of the PAC1 receptor. J Med Chem. 2009;52:3308–16.

    Article  CAS  PubMed  Google Scholar 

  47. Doan ND, Bourgault S, Dejda A, Lètourneau M, Detheux M, Vaudry D, et al. Design and in vitro characterization of PAC1/VPAC1-selective agonists with potent neuroprotective effects. Biochem Pharmacol. 2011;81:552–61.

    Article  CAS  PubMed  Google Scholar 

  48. Ramos-Alvarez I, Mantey SA, Nakamura T, Nuche-Berenguer B, Moreno P, Moody TW, et al. A structure-function study of PACAP using conformationally restricted analogs: Identification of PAC1 receptor-selective PACAP agonists. Peptides. 2015;66:26–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dejda A, Bourgault S, Doan ND, Lètourneau M, Couvineau A, Vaudry H, et al. Identification by photoaffinity labeling of the extracellular N-terminal domain of PAC1 receptor as the major binding site for PACAP. Biochimie. 2011;93:669–77.

    Article  CAS  PubMed  Google Scholar 

  50. Kumar S, Pioszak A, Zhang C, Swaminathan K, Xu HE. Crystal structure of the PAC1R extracellular domain unifies a consensus fold for hormone recognition by class B G-protein coupled receptors. PLoS One. 2011;6:e19682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gonzalez-Muniz R, Martin-Martinez M, Granata C, de Oliveira E, Santiveri CM, Gonzalez C, et al. Conformationally restricted PACAP27 analogues incorporating type II/II′ IBTM beta-turn mimetics. Synthesis, NMR structure determination, and binding affinity. Bioorg Med Chem. 2001;9:3173–83.

    Article  CAS  PubMed  Google Scholar 

  52. Inooka H, Endo S, Kitada C, Mizuta E, Fujino M. Pituitary adenylate cyclase activating polypeptide (PACAP) with 27 residues. Conformation determined by 1H NMR and CD spectroscopies and distance geometry in 25 % methanol solution. Int J Pept Protein Res. 1992;40:456–64.

    Article  CAS  PubMed  Google Scholar 

  53. Komi N, Okawa K, Tateishi Y, Shirakawa M, Fujiwara T, Akutsu H. Structural analysis of pituitary adenylate cyclase-activating polypeptides bound to phospholipid membranes by magic angle spinning solid-state NMR. Biochim Biophys Acta. 1768;2007:3001–11.

    Google Scholar 

  54. Sun C, Song D, Davis-Taber RA, Barrett LW, Scott VE, Richardson PL, et al. Solution structure and mutational analysis of pituitary adenylate cyclase-activating polypeptide binding to the extracellular domain of PAC1-RS. Proc Natl Acad Sci U S A. 2007;104:7875–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wray V, Kakoschke C, Nokihara K, Naruse S. Solution structure of pituitary adenylate cyclase activating polypeptide by nuclear magnetic resonance spectroscopy. Biochemistry. 1993;32:5832–41.

    Article  CAS  PubMed  Google Scholar 

  56. Inooka H, Ohtaki T, Kitahara O, Ikegami T, Endo S, Kitada C, et al. Conformation of a peptide ligand bound to its G-protein coupled receptor. Nat Struct Biol. 2001;8:161–5.

    Article  CAS  PubMed  Google Scholar 

  57. Sze KH, Zhou H, Yang Y, He M, Jiang Y, Wong AO. Pituitary adenylate cyclase-activating polypeptide (PACAP) as a growth hormone (GH)-releasing factor in grass carp: II. Solution structure of a brain-specific PACAP by nuclear magnetic resonance spectroscopy and functional studies on GH release and gene expression. Endocrinology. 2007;148:5042–59.

    Article  CAS  PubMed  Google Scholar 

  58. Wray V, Nokihara K, Naruse S. Solution structure comparison of the VIP/PACAP family of peptides by NMR spectroscopy. Ann N Y Acad Sci. 1998;865:37–44.

    Article  CAS  PubMed  Google Scholar 

  59. Hutchinson EG, Thornton JM. A revised set of potentials for beta-turn formation in proteins. Protein Sci. 1994;3:2207–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Aurora R, Rose GD. Helix capping. Protein Sci. 1998;7:21–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dasgupta S, Bell JA. Design of helix ends. Amino acid preferences, hydrogen bonding and electrostatic interactions. Int J Pept Protein Res. 1993;41:499–511.

    Article  CAS  PubMed  Google Scholar 

  62. Igarashi H, Ito T, Pradhan TK, Mantey SA, Hou W, Coy DH, et al. Elucidation of the vasoactive intestinal peptide pharmacophore for VPAC(2) receptors in human and rat and comparison to the pharmacophore for VPAC(1) receptors. J Pharmacol Exp Ther. 2002;303:445–60.

    Article  CAS  PubMed  Google Scholar 

  63. Igarashi H, Ito T, Hou W, Mantey SA, Pradhan TK, Ulrich 2nd CD, et al. Elucidation of vasoactive intestinal peptide pharmacophore for VPAC(1) receptors in human, rat, and guinea pig. J Pharmacol Exp Ther. 2002;301:37–50.

    Article  CAS  PubMed  Google Scholar 

  64. Bergwitz C, Gardella TJ, Flannery MR, Potts Jr JT, Kronenberg HM, Goldring SR, et al. Full activation of chimeric receptors by hybrids between parathyroid hormone and calcitonin. Evidence for a common pattern of ligand-receptor interaction. J Biol Chem. 1996;271:26469–72.

    Article  CAS  PubMed  Google Scholar 

  65. Dennis T, Fournier A, Cadieux A, Pomerleau F, Jolicoeur FB, St Pierre S, et al. hCGRP8-37, a calcitonin gene-related peptide antagonist revealing calcitonin gene-related peptide receptor heterogeneity in brain and periphery. J Pharmacol Exp Ther. 1990;254:123–8.

    CAS  PubMed  Google Scholar 

  66. Gefel D, Hendrick GK, Mojsov S, Habener J, Weir GC. Glucagon-like peptide-I analogs: effects on insulin secretion and adenosine 3′,5′-monophosphate formation. Endocrinology. 1990;126:2164–8.

    Article  CAS  PubMed  Google Scholar 

  67. Gensure RC, Shimizu N, Tsang J, Gardella TJ. Identification of a contact site for residue 19 of parathyroid hormone (PTH) and PTH-related protein analogs in transmembrane domain two of the type 1 PTH receptor. Mol Endocrinol. 2003;17:2647–58.

    Article  CAS  PubMed  Google Scholar 

  68. Dong M, Pinon DI, Cox RF, Miller LJ. Molecular approximation between a residue in the amino-terminal region of calcitonin and the third extracellular loop of the class B G protein-coupled calcitonin receptor. J Biol Chem. 2004;279:31177–82.

    Article  CAS  PubMed  Google Scholar 

  69. Dong M, Pinon DI, Cox RF, Miller LJ. Importance of the amino terminus in secretin family G protein-coupled receptors. Intrinsic photoaffinity labeling establishes initial docking constraints for the calcitonin receptor. J Biol Chem. 2004;279:1167–75.

    Article  CAS  PubMed  Google Scholar 

  70. Chen Q, Pinon DI, Miller LJ, Dong M. Molecular basis of glucagon-like peptide 1 docking to its intact receptor studied with carboxyl-terminal photolabile probes. J Biol Chem. 2009;284:34135–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dong M, Lam PC, Pinon DI, Hosohata K, Orry A, Sexton PM, et al. Molecular basis of secretin docking to its intact receptor using multiple photolabile probes distributed throughout the pharmacophore. J Biol Chem. 2011;286:23888–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dong M, Pinon DI, Miller LJ. Development of a biologically active secretin analogue incorporating a radioiodinatable photolabile p-(4-hydroxybenzoyl)phenylalanine in position 10. Regul Pept. 2002;109:181–7.

    Article  CAS  PubMed  Google Scholar 

  73. Dong M, Li Z, Pinon DI, Lybrand TP, Miller LJ. Spatial approximation between the amino terminus of a peptide agonist and the top of the sixth transmembrane segment of the secretin receptor. J Biol Chem. 2004;279:2894–903.

    Article  CAS  PubMed  Google Scholar 

  74. Dong M, Lam PC, Pinon DI, Sexton PM, Abagyan R, Miller LJ. Spatial approximation between secretin residue five and the third extracellular loop of its receptor provides new insight into the molecular basis of natural agonist binding. Mol Pharmacol. 2008;74:413–22.

    Article  CAS  PubMed  Google Scholar 

  75. Dong M, Lam PC, Gao F, Hosohata K, Pinon DI, Sexton PM, et al. Molecular approximations between residues 21 and 23 of secretin and its receptor: development of a model for peptide docking with the amino terminus of the secretin receptor. Mol Pharmacol. 2007;72:280–90.

    Article  CAS  PubMed  Google Scholar 

  76. Couvineau A, Tan YV, Ceraudo E, Laburthe M. Strategies for studying the ligand binding site of GPCRs: photoaffinity labeling of the VPAC1 receptor, a prototype of class B GPCRs. Methods Enzymol. 2013;520:219–37.

    Article  CAS  PubMed  Google Scholar 

  77. Ceraudo E, Hierso R, Tan YV, Murail S, Rouyer-Fessard C, Nicole P, et al. Spatial proximity between the VPAC1 receptor and the amino terminus of agonist and antagonist peptides reveals distinct sites of interaction. FASEB J. 2012;26:2060–71.

    Article  CAS  PubMed  Google Scholar 

  78. Couvineau A, Ceraudo E, Tan YV, Laburthe M. VPAC1 receptor binding site: contribution of photoaffinity labeling approach. Neuropeptides. 2010;44:127–32.

    Article  CAS  PubMed  Google Scholar 

  79. Ceraudo E, Tan YV, Nicole P, Couvineau A, Laburthe M. The N-terminal parts of VIP and antagonist PG97-269 physically interact with different regions of the human VPAC1 receptor. J Mol Neurosci. 2008;36:245–8.

    Article  CAS  PubMed  Google Scholar 

  80. Ceraudo E, Murail S, Tan YV, Lacapère JJ, Neumann JM, Couvineau A, et al. The vasoactive intestinal peptide (VIP) alpha-Helix up to C terminus interacts with the N-terminal ectodomain of the human VIP/Pituitary adenylate cyclase-activating peptide 1 receptor: photoaffinity, molecular modeling, and dynamics. Mol Endocrinol. 2008;22:147–55.

    Article  CAS  PubMed  Google Scholar 

  81. Tan YV, Couvineau A, Lacapère JJ, Laburthe M. Characterization of the new photoaffinity probe (Bz2-K24)-VIP. Ann N Y Acad Sci. 2006;1070:575–80.

    Article  CAS  PubMed  Google Scholar 

  82. Ceraudo E, Tan YV, Couvineau A, Lacapère JJ, Laburthe M. Spatial approximation between the C-terminus of VIP and the N-terminal ectodomain of the VPAC1 receptor. Ann N Y Acad Sci. 2006;1070:180–4.

    Article  CAS  PubMed  Google Scholar 

  83. Tan YV, Couvineau A, Laburthe M. Diffuse pharmacophoric domains of vasoactive intestinal peptide (VIP) and further insights into the interaction of VIP with the N-terminal ectodomain of human VPAC1 receptor by photoaffinity labeling with [Bpa6]-VIP. J Biol Chem. 2004;279:38889–94.

    Article  CAS  PubMed  Google Scholar 

  84. Tan YV, Couvineau A, Van Rampelbergh J, Laburthe M. Photoaffinity labeling demonstrates physical contact between vasoactive intestinal peptide and the N-terminal ectodomain of the human VPAC1 receptor. J Biol Chem. 2003;278:36531–6.

    Article  CAS  PubMed  Google Scholar 

  85. Tan YV, Couvineau A, Murail S, Ceraudo E, Neumann JM, Lacapère JJ, et al. Peptide agonist docking in the N-terminal ectodomain of a class II G protein-coupled receptor, the VPAC1 receptor. Photoaffinity, NMR, and molecular modeling. J Biol Chem. 2006;281:12792–8.

    Google Scholar 

  86. Beebe X, Darczak D, Davis-Taber RA, Uchic ME, Scott VE, Jarvis MF, et al. Discovery and SAR of hydrazide antagonists of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor type 1 (PAC1-R). Bioorg Med Chem Lett. 2008;18:2162–6.

    Article  CAS  PubMed  Google Scholar 

  87. Chu A, Caldwell JS, Chen YA. Identification and characterization of a small molecule antagonist of human VPAC(2) receptor. Mol Pharmacol. 2010;77:95–101.

    Article  CAS  PubMed  Google Scholar 

  88. Wu L, Guang W, Chen X, Hong A. Homology modeling and molecular docking of human pituitary adenylate cyclase-activating polypeptide I receptor. Mol Med Rep. 2014;10:1691–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Dickson L, Aramori I, McCulloch J, Sharkey J, Finlayson K. A systematic comparison of intracellular cyclic AMP and calcium signalling highlights complexities in human VPAC/PAC receptor pharmacology. Neuropharmacology. 2006;51:1086–98.

    Article  CAS  PubMed  Google Scholar 

  90. Lamine A, Létourneau M, Doan ND, Maucotel J, Couvineau A, Vaudry H et al. Characterizations of a synthetic pituitary adenylate cyclase-activating polypeptide analog displaying potent neuroprotective activity and reduced in vivo cardiovascular side effects in a Parkinson’s disease model.Neuropharmacology. 2016;108:440-450.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Canadian Institutes of Health Research (AF; FRN102734), the Fonds de recherche du Québec-Nature et technologies (DC; 1888882), and the Natural Sciences and Engineering Research Council of Canada (SB; 1557119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Fournier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fournier, A., Bourgault, S., Chatenet, D. (2016). The Pharmacophoric Determinants of PACAP. In: Reglodi, D., Tamas, A. (eds) Pituitary Adenylate Cyclase Activating Polypeptide — PACAP. Current Topics in Neurotoxicity, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-35135-3_8

Download citation

Publish with us

Policies and ethics