Skip to main content

Case Scenario for Perioperative Fluid Management for Major Colorectal Surgery

  • Chapter
  • First Online:
Perioperative Fluid Management
  • 1414 Accesses

Abstract

Fluid management should be guided by dynamic hemodynamic parameters, patient factors, and surgical factors. The conventional approach to some set rule and formulas is being challenged and being replaced by a goal-directed approach. The goal of perioperative fluid management is to maintain intravascular volume, safeguard adequate perfusion of vital organs (brain, heart, kidney, and gut), and maintain acid–base balance and electrolytes balance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neligan PJ. Chapter 35: Monitoring and managing perioperative electrolyte abnormalities, acid–base disorders, and fluid replacement. In: Longnecker DE, Brown DL, Newman MF, Zapol WM, editors. Anesthesiology. 2nd ed. New York: The McGraw-Hill Companies; 2012.

    Google Scholar 

  2. Bleier JI, Aarons CB. Perioperative fluid restriction. Clin Colon Rectal Surg. 2013;26(3):197–202.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kehlet H, Wilmore DW. Evidence-based surgical care and the evolution of fast-track surgery. Ann Surg. 2008;248(2):189–98.

    Article  PubMed  Google Scholar 

  4. Scott MJ, Baldini G, Fearon KC, Feldheiser A, Feldman LS, Gan TJ, et al. Enhanced Recovery After Surgery (ERAS) for gastrointestinal surgery, part 1: pathophysiological considerations. Acta Anaesthesiol Scand. 2015;59(10):1212–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thiele RH, Rea KM, Turrentine FE, Friel CM, Hassinger TE, McMurry TL, et al. Standardization of care: impact of an enhanced recovery protocol on length of stay, complications, and direct costs after colorectal surgery. J Am Coll Surg. 2015;220(4):430–43.

    Article  PubMed  Google Scholar 

  6. Gustafsson UO, Scott MJ, Schwenk W, Demartines N, Roulin D, Francis N, et al. Guidelines for perioperative care in elective colonic surgery: Enhanced Recovery After Surgery (ERAS®) Society Recommendations. Clin Nutr. 2012;31(6):783–800.

    Article  CAS  PubMed  Google Scholar 

  7. Bragg D, El-Sharkawy AM, Psaltis E, Maxwell-Armstrong CA, Lobo DN. Postoperative ileus: recent developments in pathophysiology and management. Clin Nutr. 2015;34(3):367–76.

    Article  PubMed  Google Scholar 

  8. Cecconi M, Corredor C, Arulkumaran N, Abuella G, Ball J, Grounds RM, et al. Clinical review: goal-directed therapy-what is the evidence in surgical patients? The effect on different risk groups. Crit Care. 2013;17(2):209.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett ED. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit Care. 2005;9(6):R687–93.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vetter TR, Boudreaux AM, Jones KA, Hunter Jr JM, Pittet JF. The perioperative surgical home: how anesthesiology can collaboratively achieve and leverage the triple aim in health care. Anesth Analg. 2014;118(5):1131–6.

    Article  PubMed  Google Scholar 

  11. Bellamy MC. Wet, dry or something else? Br J Anaesth. 2006;97(6):755–7.

    Article  CAS  PubMed  Google Scholar 

  12. Yates DR, Davies SJ, Milner HE, Wilson RJ. Crystalloid or colloid for goal-directed fluid therapy in colorectal surgery. Br J Anaesth. 2014;112(2):281–9.

    Article  CAS  PubMed  Google Scholar 

  13. Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367(20):1901–11.

    Article  CAS  PubMed  Google Scholar 

  14. Squara P, Denjean D, Estagnasie P, Brusset A, Dib JC, Dubois C. Noninvasive cardiac output monitoring (NICOM): a clinical validation. Intensive Care Med. 2007;33(7):1191–4.

    Article  PubMed  Google Scholar 

  15. AHRQ. Healthcare cost and utilization project. Statistical brief #146. 2013 [cited 2014 31 December]. Available from: http://www.hcup-us.ahrq.gov/reports/statbriefs/sb146.pdf.

  16. Pearse RM, Harrison DA, MacDonald N, Gillies MA, Blunt M, Ackland G, et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA. 2014;311(21):2181–90.

    Article  CAS  PubMed  Google Scholar 

  17. Ebm C, Cecconi M, Sutton L, Rhodes A. A cost-effectiveness analysis of postoperative goal-directed therapy for high-risk surgical patients. Crit Care Med. 2014;42(5):1194–203.

    Article  PubMed  Google Scholar 

  18. Squara P, Rotcajg D, Denjean D, Estagnasie P, Brusset A. Comparison of monitoring performance of bioreactance vs. pulse contour during lung recruitment maneuvers. Crit Care. 2009;13(4):R125.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sundar S, Panzica P. Lidco systems. Int Anesthesiol Clin. 2010;48(1):87–100.

    Article  PubMed  Google Scholar 

  20. Slagt C, Malagon I, Groeneveld AB. Systematic review of uncalibrated arterial pressure waveform analysis to determine cardiac output and stroke volume variation. Br J Anaesth. 2014;112(4):626–37.

    Article  CAS  PubMed  Google Scholar 

  21. Suehiro K, Tanaka K, Matsuura T, Funao T, Yamada T, Mori T, et al. The Vigileo-FloTrac™ system: arterial waveform analysis for measuring cardiac output and predicting fluid responsiveness: a clinical review. J Cardiothorac Vasc Anesth. 2014;28(5):1361–74.

    Article  PubMed  Google Scholar 

  22. Taton O, Fagnoul D, De Backer D, Vincent JL. Evaluation of cardiac output in intensive care using a non-invasive arterial pulse contour technique (Nexfin(®)) compared with echocardiography. Anaesthesia. 2013;68(9):917–23.

    Article  CAS  PubMed  Google Scholar 

  23. Ameloot K, Van De Vijver K, Van Regenmortel N, De Laet I, Schoonheydt K, Dits H, et al. Validation study of Nexfin® continuous non-invasive blood pressure monitoring in critically ill adult patients. Minerva Anestesiol. 2014;80(12):1294–301.

    CAS  PubMed  Google Scholar 

  24. Forget P, Lois F, de Kock M. Goal-directed fluid management based on the pulse oximeter-derived pleth variability index reduces lactate levels and improves fluid management. Anesth Analg. 2010;111(4):910–4.

    PubMed  Google Scholar 

  25. Marque S, Cariou A, Chiche JD, Squara P. Comparison between Flotrac-Vigileo and bioreactance, a totally noninvasive method for cardiac output monitoring. Crit Care. 2009;13(3):R73.

    Article  PubMed  PubMed Central  Google Scholar 

  26. van der Spoel AG, Voogel AJ, Folkers A, Boer C, Bouwman RA. Comparison of noninvasive continuous arterial waveform analysis (Nexfin) with transthoracic Doppler echocardiography for monitoring of cardiac output. J Clin Anesth. 2012;24(4):304–9.

    Article  PubMed  Google Scholar 

  27. Martina JR, Westerhof BE, van Goudoever J, de Beaumont EM, Truijen J, Kim YS, et al. Noninvasive continuous arterial blood pressure monitoring with Nexfin®. Anesthesiology. 2012;116(5):1092–103.

    Article  CAS  PubMed  Google Scholar 

  28. Eeftinck Schattenkerk DW, van Lieshout JJ, van den Meiracker AH, Wesseling KR, Blanc S, Wieling W, et al. Nexfin noninvasive continuous blood pressure validated against Riva-Rocci/Korotkoff. Am J Hypertens. 2009;22(4):378–83.

    Article  PubMed  Google Scholar 

  29. Bogert LW, Wesseling KH, Schraa O, Van Lieshout EJ, de Mol BA, van Goudoever J, et al. Pulse contour cardiac output derived from non-invasive arterial pressure in cardiovascular disease. Anaesthesia. 2010;65(11):1119–25.

    Article  CAS  PubMed  Google Scholar 

  30. Stover JF, Stocker R, Lenherr R, Neff TA, Cottini SR, Zoller B, et al. Noninvasive cardiac output and blood pressure monitoring cannot replace an invasive monitoring system in critically ill patients. BMC Anesthesiol. 2009;9:6.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Biais M, Vidil L, Sarrabay P, Cottenceau V, Revel P, Sztark F. Changes in stroke volume induced by passive leg raising in spontaneously breathing patients: comparison between echocardiography and Vigileo/Flotrac device. Crit Care. 2009;13(6):R195.

    Article  PubMed  PubMed Central  Google Scholar 

  32. De Backer D, Marx G, Tan A, Junker C, Van Nuffelen M, Huter L, et al. Arterial pressure-based cardiac output monitoring: a multicenter validation of the third-generation software in septic patients. Intensive Care Med. 2011;37(2):233–40.

    Article  PubMed  Google Scholar 

  33. Tokarik M, Sjoberg F, Balik M, Pafcuga I, Broz L. Fluid therapy LiDCO controlled trial-optimization of volume resuscitation of extensively burned patients through noninvasive continuous real-time hemodynamic monitoring LiDCO. J Burn Care Res. 2013;34(5):537–42.

    Article  PubMed  Google Scholar 

  34. Wiles MD, Whiteley WJ, Moran CG, Moppett IK. The use of LiDCO based fluid management in patients undergoing hip fracture surgery under spinal anaesthesia: neck of femur optimisation therapy––targeted stroke volume (NOTTS): study protocol for a randomized controlled trial. Trials. 2011;12:213.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bennett-Guerrero E. Hemodynamic goal-directed therapy in high-risk surgical patients. JAMA. 2014;311(21):2177–8.

    Article  CAS  PubMed  Google Scholar 

  36. Benes J, Chytra I, Altmann P, Hluchy M, Kasal E, Svitak R, et al. Intraoperative fluid optimization using stroke volume variation in high risk surgical patients: results of prospective randomized study. Crit Care. 2010;14(3):R118.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cecconi M, Fasano N, Langiano N, Divella M, Costa MG, Rhodes A, et al. Goal-directed haemodynamic therapy during elective total hip arthroplasty under regional anaesthesia. Crit Care. 2011;15(3):R132.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest. 1988;94(6):1176–86.

    Article  CAS  PubMed  Google Scholar 

  39. Kuper M, Gold SJ, Callow C, Quraishi T, King S, Mulreany A, et al. Intraoperative fluid management guided by oesophageal doppler monitoring. BMJ. 2011;342:d3016.

    Article  PubMed  Google Scholar 

  40. Sinclair S, James S, Singer M. Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. BMJ. 1997;315(7113):909–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Venn R, Steele A, Richardson P, Poloniecki J, Grounds M, Newman P. Randomized controlled trial to investigate influence of the fluid challenge on duration of hospital stay and perioperative morbidity in patients with hip fractures. Br J Anaesth. 2002;88(1):65–71.

    Article  CAS  PubMed  Google Scholar 

  42. Gan TJ, Soppitt A, Maroof M, El-Moalem H, Robertson KM, Moretti E, et al. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology. 2002;97(4):820–6.

    Article  PubMed  Google Scholar 

  43. Conway DH, Mayall R, Abdul-Latif MS, Gilligan S, Tackaberry C. Randomised controlled trial investigating the influence of intravenous fluid titration using oesophageal doppler monitoring during bowel surgery. Anaesthesia. 2002;57(9):845–9.

    Article  CAS  PubMed  Google Scholar 

  44. McKendry M, McGloin H, Saberi D, Caudwell L, Brady AR, Singer M. Randomised controlled trial assessing the impact of a nurse delivered, flow monitored protocol for optimisation of circulatory status after cardiac surgery. BMJ. 2004;329(7460):258.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wakeling HG, McFall MR, Jenkins CS, Woods WG, Miles WF, Barclay GR, et al. Intraoperative oesophageal doppler guided fluid management shortens postoperative hospital stay after major bowel surgery. Br J Anaesth. 2005;95(5):634–42.

    Article  CAS  PubMed  Google Scholar 

  46. Noblett SE, Snowden CP, Shenton BK, Horgan AF. Randomized clinical trial assessing the effect of doppler-optimized fluid management on outcome after elective colorectal resection. Br J Surg. 2006;93(9):1069–76.

    Article  CAS  PubMed  Google Scholar 

  47. Chytra I, Pradl R, Bosman R, Pelnar P, Kasal E, Zidkova A. Esophageal doppler-guided fluid management decreases blood lactate levels in multiple-trauma patients: a randomized controlled trial. Crit Care. 2007;11(1):R24.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pro CI, Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370(18):1683–93.

    Article  Google Scholar 

  49. Donati A, Loggi S, Preiser JC, Orsetti G, Munch C, Gabbanelli V, et al. Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients. Chest. 2007;132(6):1817–24.

    Article  PubMed  Google Scholar 

  50. Wang P, Wang HW, Zhong TD. Effect of stroke volume variability-guided intraoperative fluid restriction on gastrointestinal functional recovery. Hepatogastroenterology. 2012;59(120):2457–60.

    PubMed  Google Scholar 

  51. Ramsingh DS, Sanghvi C, Gamboa J, Cannesson M, Applegate 2nd RL. Outcome impact of goal directed fluid therapy during high risk abdominal surgery in low to moderate risk patients: a randomized controlled trial. J Clin Monit Comput. 2013;27(3):249–57.

    Article  PubMed  Google Scholar 

  52. Bundgaard-Nielsen M, Jorgensen CC, Secher NH, Kehlet H. Functional intravascular volume deficit in patients before surgery. Acta Anaesthesiol Scand. 2010;54(4):464–9.

    Article  CAS  PubMed  Google Scholar 

  53. Muller L, Briere M, Bastide S, Roger C, Zoric L, Seni G, et al. Preoperative fasting does not affect haemodynamic status: a prospective, non-inferiority, echocardiography study. Br J Anaesth. 2014;112(5):835–41.

    Article  CAS  PubMed  Google Scholar 

  54. Dalton JE, Glance LG, Mascha EJ, Ehrlinger J, Chamoun N, Sessler DI. Impact of present-on-admission indicators on risk-adjusted hospital mortality measurement. Anesthesiology. 2013;118(6):1298–306.

    Article  PubMed  Google Scholar 

  55. Sessler DI, Sigl JC, Manberg PJ, Kelley SD, Schubert A, Chamoun NG. Broadly applicable risk stratification system for predicting duration of hospitalization and mortality. Anesthesiology. 2010;113(5):1026–37.

    Article  PubMed  Google Scholar 

  56. Coward S, Heitman SJ, Clement F, Negron M, Panaccione R, Ghosh S, et al. Funding a smoking cessation program for crohn’s disease: an economic evaluation. Am J Gastroenterol. 2015;110(3):368–77.

    Article  PubMed  Google Scholar 

  57. Cropley M, Theadom A, Pravettoni G, Webb G. The effectiveness of smoking cessation interventions prior to surgery: a systematic review. Nicotine Tob Res. 2008;10(3):407–12.

    Article  PubMed  Google Scholar 

  58. Rostagno C, Olivo G, Comeglio M, Boddi V, Banchelli M, Galanti G, et al. Prognostic value of 6-minute walk corridor test in patients with mild to moderate heart failure: comparison with other methods of functional evaluation. Eur J Heart Fail. 2003;5(3):247–52.

    Article  PubMed  Google Scholar 

  59. Lee L, Schwartzman K, Carli F, Zavorsky GS, Li C, Charlebois P, et al. The association of the distance walked in 6 min with pre-operative peak oxygen consumption and complications 1 month after colorectal resection. Anaesthesia. 2013;68(8):811–6.

    Article  CAS  PubMed  Google Scholar 

  60. Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M. A rational approach to perioperative fluid management. Anesthesiology. 2008;109(4):723–40.

    Article  PubMed  Google Scholar 

  61. Baldini G, Fawcett WJ. Anesthesia for colorectal surgery. Anesthesiol Clin. 2015;33(1):93–123.

    Article  PubMed  Google Scholar 

  62. Mythen MG, Swart M, Acheson N, Crawford R, Jones K, Kuper M, et al. Perioperative fluid management: consensus statement from the enhanced recovery partnership. Perioper Med (Lond). 2012;1:2.

    Google Scholar 

  63. Varadhan KK, Lobo DN, Ljungqvist O. Enhanced Recovery After Surgery: the future of improving surgical care. Crit Care Clin. 2010;26:527–47.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Maheshwari MD, MPH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maheshwari, K. (2016). Case Scenario for Perioperative Fluid Management for Major Colorectal Surgery. In: Farag, E., Kurz, A. (eds) Perioperative Fluid Management. Springer, Cham. https://doi.org/10.1007/978-3-319-39141-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39141-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39139-7

  • Online ISBN: 978-3-319-39141-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics