Skip to main content

Frequent Closed Patterns Based Multiple Consensus Clustering

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9693))

Included in the following conference series:

Abstract

Clustering is one of the major tasks in data mining. However, selecting an algorithm to cluster a dataset is a difficult task, especially if there is no prior knowledge on the structure of the data. Consensus clustering methods can be used to combine multiple base clusterings into a new solution that provides better partitioning. In this work, we present a new consensus clustering method based on detecting clustering patterns by mining frequent closed itemset. Instead of generating one consensus, this method both generates multiple consensuses based on varying the number of base clusterings, and links these solutions in a hierarchical representation that eases the selection of the best clustering. This hierarchical view also provides an analysis tool, for example to discover strong clusters or outlier instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Sect. 3.1 for a definition of cluster membership matrix.

  2. 2.

    Generating only clustering patterns of maximum agreement between base clusterings reduces processing time.

  3. 3.

    This is the objective of clustering algorithms, yet they differ in how they define the similarity between instances.

  4. 4.

    Another possibility is to use the arules R package [6].

References

  1. Asur, S., Ucar, D., Parthasarathy, S.: An ensemble framework for clustering protein-protein interaction networks. Bioinformatics 23(13), i29–i40 (2007)

    Article  Google Scholar 

  2. Caruana, R., Elhawary, M., Nguyen, N., Smith, C.: Meta clustering. In: Proceedings of the IEEE ICDM Conference, pp. 107–118 (2006)

    Google Scholar 

  3. Csardi, G., Nepusz, T.: The igraph software package for complex network research. InterJournal Complex Systems, 1695 (2006). http://igraph.org

  4. Dalton, L., Ballarin, V., Brun, M.: Clustering algorithms: on learning, validation, performance, and applications to genomics. Curr. Genomics 10(6), 430 (2009)

    Article  Google Scholar 

  5. Ghaemi, R., Sulaiman, M.N., Ibrahim, H., Mustapha, N.: A survey: clustering ensembles techniques. WASET 50, 636–645 (2009)

    Google Scholar 

  6. Hahsler, M., Gruen, B., Hornik, K.: arules - a computational environment for mining association rules and frequent item sets. J. Stat. Softw. 14(15), 1–25 (2005)

    Article  Google Scholar 

  7. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. J. Intell. Inf. Syst. 17(2), 107–145 (2001)

    Article  MATH  Google Scholar 

  8. Hornik, K.: A CLUE for CLUster Ensembles. J. Stat. Softw. 14(12), 1–25 (2005)

    Article  MathSciNet  Google Scholar 

  9. Hornik, K.: CLUE: Cluster ensembles (2015). r package version 0.3-50 http://CRAN.R-project.org/package=clue

  10. Jaccard, P.: The distribution of the flora in the alpine zone.1. New Phytol. 11(2), 37–50 (1912). doi:10.1111/j.1469-8137.1912.tb05611.x

    Article  Google Scholar 

  11. Li, T., Ding, C.: Weighted consensus clustering. In: Proceedings of the SIAM Conference on Data Mining, pp. 798–809 (2008)

    Google Scholar 

  12. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  13. Mondal, K.C., Pasquier, N., Mukhopadhyay, A., Maulik, U., Bandhopadyay, S.: A new approach for association rule mining and bi-clustering using formal concept analysis. In: Perner, P. (ed.) MLDM 2012. LNCS, vol. 7376, pp. 86–101. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Newman, D., Hettich, S., Blake, C., Merz, C.: UCI repository of machine learning databases (1998). http://www.ics.uci.edu/~mlearn/MLRepository.html

  15. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association rules using closed itemset lattices. Inf. Syst. 24(1), 25–46 (1999)

    Article  MATH  Google Scholar 

  16. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2015). https://www.R-project.org/

  17. Sarumathi, S., Shanthi, N., Sharmila, M.: A comparative analysis of different categorical data clustering ensemble methods in data mining. IJCA 81(4), 46–55 (2013)

    Article  Google Scholar 

  18. Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. JMLR 3, 583–617 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Ultsch, A.: Clustering with SOM: U*C. In: Proceedings of the WSOM Workshop, pp. 75–82 (2005)

    Google Scholar 

  20. Vega-Pons, S., Ruiz-Shulcloper, J.: A survey of clustering ensemble algorithms. IJPRAI 25(03), 337–372 (2011)

    MathSciNet  Google Scholar 

  21. Wu, O., Hu, W., Maybank, S.J., Zhu, M., Li, B.: Efficient clustering aggregation based on data fragments. IEEE Trans. Syst. Man Cybern B Cybern. 42(3), 913–926 (2012)

    Article  Google Scholar 

  22. Xu, D., Tian, Y.: A comprehensive survey of clustering algorithms. Ann. Data Sci. 2(2), 165–193 (2015)

    Article  MathSciNet  Google Scholar 

  23. Yang, G.: The complexity of mining maximal frequent itemsets and maximal frequent patterns. In: ACM SIGKDD, pp. 344–353 (2004)

    Google Scholar 

  24. Zhang, Y., Li, T.: Consensus clustering + meta clustering = multiple consensus clustering. In: Proceedings of the FLAIRS Conference (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atheer Al-Najdi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Al-Najdi, A., Pasquier, N., Precioso, F. (2016). Frequent Closed Patterns Based Multiple Consensus Clustering. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2016. Lecture Notes in Computer Science(), vol 9693. Springer, Cham. https://doi.org/10.1007/978-3-319-39384-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39384-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39383-4

  • Online ISBN: 978-3-319-39384-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics