Skip to main content

A Polarized \(^{3}\)He Target for the Exploration of Spin Effects in Laser-Induced Plasmas

  • Conference paper
  • First Online:
Nuclear Fusion with Polarized Fuel

Abstract

In order to investigate the polarization degree of laser-accelerated \(^3\mathrm{He}\) ions from a polarized \(^3\mathrm{He}\) gas–jet target, several challenges have to be overcome. One of these is the development of an appropriate polarized \(^3\mathrm{He}\) gas–jet target. Since our experiments are carried out at the PHELIX Petawatt Laser Facility, GSI Darmstadt, the layout of the setup has to cope with the available space within the PHELIX target chamber. The essential components of such a layout are a magnetic holding field for storing polarized \(^3\mathrm{He}\) gas inside the vacuum chamber for many hours, the gas–jet source for providing the desired laser target, and finally, a polarimeter for measuring the spin-polarization degree of laser-accelerated \(^3\mathrm{He}^{2+}\) ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Strickland, G. Mourou, Op. Commun. 56(3), 219–221 (1985). doi:10.1016/0030-4018(85)90120-8

    Article  ADS  Google Scholar 

  2. N. Raab, M. Büscher, M. Cerchez, R.W. Engels, I. Engin, P. Gibbon, P. Greven, A. Holler, A. Karmakar, A. Lehrach, R. Maier, M. Swantusch, M. Toncian, T. Toncian, O. Willi, Phys. Plasmas 21(2), 023104 (2014). doi:10.1063/1.4865096

    Article  ADS  Google Scholar 

  3. H. Paetz gen, Schieck, Few-Body Syst. 54(12), 2159–2170 (2012). doi:10.1007/s00601-012-0485-0

    Google Scholar 

  4. M. Temporal, V. Brandon, B. Canaud, J.P. Didelez, R. Fedosejevs, R. Ramis, Nucl. Fusion 52(10), 103011 (2012). doi:10.1088/0029-5515/52/10/103011

    Article  ADS  Google Scholar 

  5. T. Honda, Y. Nakao, Y. Honda, K. Kudo, H. Nakashima, Nucl. Fusion 31(5), 851 (1991). doi:10.1088/0029-5515/31/5/004

    Article  Google Scholar 

  6. K. Krimmer, M. Distler, W. Heil, S. Karpuk, D. Kiselev, Z. Salhi, E.W. Otten, Nucl. Instrum. Meth. Phys. Res. A 611(1), 18–24 (2009). doi:10.1016/j.nima.2009.09.064

    Article  ADS  Google Scholar 

  7. M. Tanaka, Nucl. Instrum. Meth. Phys. Res. A 402(2–3), 492–498 (1998). doi:10.1016/S0168 -9002(97)00896-6

    Article  ADS  Google Scholar 

  8. D.O. Findley, S.D. Baker, E.B. Carter, N.D. Stockwell, Nucl. Instrum. Meth. 71(2), 125–132 (1969). doi:10.1016/0029-554X(69)90001-9

    Article  ADS  Google Scholar 

  9. W.E. Burcham, O. Karban, S. Oh, W.B. Powell, Nucl. Instrum. Meth. 116(1), 1–7 (1974). doi:10.1016/0029-554X(74)90569-2

    Article  ADS  Google Scholar 

  10. R.J. Slobodrian, Nucl. Instrum. Meth. Phys. Res. 185(1–3), 581–583 (1981). doi:10.1016/0029-554X(81)91257-X

    Article  ADS  Google Scholar 

  11. J. Maxwell, R. Milner, C. Epstein, Phys. Part. Nucl. 45(1), 301–302 (2014). doi:10.1134/S1063779614010651

    Article  Google Scholar 

  12. C. Mrozik, O. Endner, C. Hauke, W. Heil, S. Karpuk, J. Klemmer, E.W. Otten, J. Phys. Conf. Ser. 294(1), 012007 (2011). doi:10.1088/1742-6596/294/1/012007

    Article  ADS  Google Scholar 

  13. T.G. Walker, W. Happer, Rev. Mod. Phys. 69(2), 629–642 (1997). doi:10.1103/RevModPhys.69.629

    Article  ADS  Google Scholar 

  14. S. Hiebel, T. Gromann, D. Kiselev, J. Schmiedeskamp, Y. Gusev, W. Heil, S. Karpuk, J. Krimmer, E.W. Otten, Z. Salhi, J. Magn, J. Magn. Reson. 204(1), 37–49 (2010). doi:10.1016/j.jmr.2010.01.017

    Google Scholar 

  15. J.L. Flowers, B.W. Petley, M.G. Richards, Metrologia 30(2), 75 (1993). doi:10.1088/0026-1394/30/2/004

    Article  ADS  Google Scholar 

  16. J. Schmiedeskamp, W. Heil, E.W. Otten, R.K. Kremer, A. Simon, J. Zimmer, Eur. Phys. J. D 38(3), 427–438 (2006). doi:10.1140/epjd/e2006-00050-2

    Article  ADS  Google Scholar 

  17. PHELIX, GSI Helmholtzzentrum für Schwerionenforschung GmbH, https://www.gsi.de/ work/forschung/appamml/plasmaphysikphelix/phelix.htm (Accessed: 2016-02-05)

  18. H. Soltner, P. Blümler, Concept Mag. Res. A 36A(4), 211–222 (2010). doi:10.1002/cmr.a.20165

    Article  Google Scholar 

  19. H. Soltner, M. Büscher, P. Burgmer, I. Engin, B. Nauschütt, S. Maier, H. Glückler, IEEE T. Appl. Supercon. 26(4), 1–4 (2016). doi:10.1109/TASC.2016.2535293

    Google Scholar 

  20. S. Semushin, V. Malka, Rev. Sci. Instrum. 72(7), 2961–2965 (2001). doi:10.1063/1.1380393

    Article  ADS  Google Scholar 

  21. D.S. Hussey, D.R. Rich, A.S. Belov, X. Tong, H. Yang, C. Bailey, C.D. Keith, J. Hartfield, G.D.R. Hall, T.C. Black, W.M. Snow, T.R. Gentile, W.C. Chen, G.L. Jones, E. Wildman, Rev. Sci. Instrum. 76(5), 053503 (2005). doi:10.1063/1.1898163

    Article  ADS  Google Scholar 

  22. Tandetron, Peter Grünberg Institut, Forschungszentrum Jülich GmbH, http://www.fz-juelich.de/pgi/pgi-9/DE/Leistungen/01-Facilities/07-Tandetron/_node.html (Accessed: 2016-02-05)

  23. I. Engin, M. Büscher, O. Deppert, L. Di Lucchio, R. Engels, S. Frydrych, P. Gibbon, A. Kleinschmidt, A. Lehrach, M. Roth, F. Schlüter, K. Strathmann, F. Wagner, Towards a Laser-driven polarized \(^3\)He Ion–Beam Source, in Proceedings of the XVIth International Workshop in Polarized Sources, Targets, and Polarimetry, PoS(PSTP2015)002, http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=243

Download references

Acknowledgments

The authors gratefully acknowledge the strong personal support of both R. Maier and D. Prasuhn (IKP, FZ Jülich). Furthermore, sincere appreciation is expressed to the Institute for Nuclear Physics (IKP, FZ Jülich), the Central Institute for Engineering, Electronics and Analytics (ZEA, FZ Jülich), as well as to the Plasma Physics staff (PHELIX, GSI Darmstadt) for the great assistance and for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Engin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Engin, I. et al. (2016). A Polarized \(^{3}\)He Target for the Exploration of Spin Effects in Laser-Induced Plasmas. In: Ciullo, G., Engels, R., Büscher, M., Vasilyev, A. (eds) Nuclear Fusion with Polarized Fuel. Springer Proceedings in Physics, vol 187. Springer, Cham. https://doi.org/10.1007/978-3-319-39471-8_5

Download citation

Publish with us

Policies and ethics