Skip to main content

Changes in Relative Size of Organs that Accompany Decrease in Body Size

  • Chapter
  • First Online:
At the Size Limit - Effects of Miniaturization in Insects
  • 856 Accesses

Abstract

Insects are very convenient for studying the scaling of organs and tissues which is associated with extreme miniaturization: first, they have a huge range of body sizes (the largest is more than 2000 times as long as the smallest); second, the smallest insects are comparable in size to unicellular organisms but retain high morphological complexity. Most insect organs display a huge potential for scaling and for retaining their organization and sometimes even their constant relative volume in spite of their size decreasing to only a small fraction of its initial value. By contrast, the relative volume of the reproductive and nervous systems increases by a considerable factor as body size decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, J. F., Rahl, H., & Prange, H. D. (1979). Scaling of Supportive Tissue Mass. Quarterly Review Biology, 54(2), 139–148.

    Article  Google Scholar 

  • Bennett, P. M., & Harvey, P. H. (1985). Relative brain size and ecology in birds. Journal of Zoology, 207, 151–169.

    Article  Google Scholar 

  • Bernstein, S., & Bernstein, R. A. (1969). Relationships between foraging efficiency and the size of the head and component brain and sensory structures in the red wood ant. Brain Research, 16(1), 85–104.

    Google Scholar 

  • Beutel, R. G., & Haas, A. (1998). Larval head morphology of Hydroscapha natans LeConte 1874 (Coleoptera, Myxophaga, Hydroscaphidae) with special reference to miniaturization. Zoomorphology, 118(2), 103–116.

    Article  Google Scholar 

  • Beutel, R. G., Pohl, H., & Hunefeld, F. (2005). Strepsipteran brain and effect of miniaturization (Insecta). Arthropod Structure & Development, 34(3), 301–313.

    Article  Google Scholar 

  • Carstens, Von S., & Storch, V. (1980). Beeinflussung der Ultrastruktur von Fettkorper und Mitteldarm des Staphyliniden Atheta fungi (Grav.) durch Umwelteinflusse. Zoologische Jahrbuecher Abteilung fuer Anatomie und Ontogenie der Tiere,  103, 73–84.

    Google Scholar 

  • Cole, B. J. (1986). Size and behavior in ants: Constraints on complexity. Proceedings of the National Academy of Sciences of the United States of America, 82, 8548–8551.

    Article  Google Scholar 

  • Eberhard, W. G. (2007). Miniaturized orb-weaving spiders: behavioural precision is not limited by small size. Proceedings of the Royal Society B, 274, 2203–2209.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eberhard, W. G. (2009). Static allometry and animal genitalia. Evolution, 63(1), 48–66.

    Article  PubMed  Google Scholar 

  • Eberhard, W. G. (2011). Are smaller animals behaviourally limited? Lack of clear constraints in miniature spiders. Animal Behaviour, 81, 813–823.

    Article  Google Scholar 

  • Eberhard, W. G., & Wcislo, W. T. (2011). Grade changes in brain–body allometry: morphological and behavioural correlates of brain size in miniature spiders, insects and other invertebrates. Advances in Insect Physiology, 40, 155–214.

    Article  Google Scholar 

  • Franz, R., Hummel, J., Kienzle, E., Kölle, P., Gunga, H. C., & Clauss, M. (2009). Allometry of visceral organs in living amniotes and its implications for sauropod dinosaurs. Proceedings of the Royal Society B, 276, 1731–1736.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goossen, H. (1949). Untersuchungen an gehirnen verschieden grosser, jeweils verwandter Coleopteren- und Hymenopteren. Arten Zoologische Jahrbücher Abteilung für Allgemeine Zoologie, 62, 1–64.

    Google Scholar 

  • Gould, S. J. (1975). Allometry in primates, with emphasis on scaling and evolution of brai. Contributions to primatology, 5, 244–292.

    CAS  PubMed  Google Scholar 

  • Hiestend, W. A. (1928). Strength and weight of insects. Annals of the Entomological Society of America, 21, 601–606.

    Article  Google Scholar 

  • Huxley, J. (1932). Problems of relative growth. London: Methuen.

    Google Scholar 

  • Ivanova-Kazas, O. M. (1961). Oчepки пo cpaвнитeльнoй эмбpиoлoгии пepeпoнчaтoкpылыx (Essays on the comparative embryology of Hymenoptera). Leningrad: Leningrad Univ. Press.

    Google Scholar 

  • Mares, S., Ash, L., & Gronenberg, W. (2005). Brain allometry in bumblebee and honeybee workers. Brain, Behavior and Evolution, 66, 50–61.

    Article  PubMed  Google Scholar 

  • Martin, R. D. (1981). Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature, 29, 57–60.

    Article  Google Scholar 

  • Platel, R. (1976). Analyse volumetrique compaire des principales subdividions enciphaliques chez les reptiles sauriens. Journal fur Hirnforschung, 17, 513–537.

    CAS  PubMed  Google Scholar 

  • Polilov, A. A. (2012). The smallest insects evolve anucleate neurons. Arthropod Structure & Development, 41(1), 27–32.

    Google Scholar 

  • Polilov, A. A. (2014). Mopфoлoгичecкиe ocoбeннocти мeльчaйшиx нaceкoмыx (Morphological features of the smallest insects). Doctor Dissertation, Lomonosov Moscow State University.

    Google Scholar 

  • Polilov, A. A. (2015). Small is beautiful: features of the smallest insects and limits to miniaturization. Annual Review of Entomology, 60, 103–121.

    Article  CAS  PubMed  Google Scholar 

  • Polilov, A. A., & Beutel, R. G. (2009). Miniaturization effects in larvae and adults of Mikado sp. (Coleoptera: Ptiliidae), one of the smallest free-living insects. Arthropod Structure & Development, 38(3), 247–270.

    Article  Google Scholar 

  • Polilov, A. A., & Beutel, R. G. (2010). Developmental stages of the hooded beetle Sericoderus lateralis (Coleoptera: Corylophidae) with comments on the phylogenetic position and effects of miniaturization. Arthropod Structure & Development, 39(1), 52–69.

    Article  Google Scholar 

  • Prange, H. D., Anderson, J. F., & Rahn, H. (1979). Scaling of skeletal mass to body mass in birds and mammals. American Naturalist, 113, 103–122.

    Article  Google Scholar 

  • Quesada, R., Triana, E., Vargas, G., Douglass, J. K., Seid, M. A., Niven, J. E., et al. (2011). The allometry of CNS size and consequences of miniaturization in orb-weaving and cleptoparasitic spiders. Arthropod Structure & Development, 40(6), 521–529.

    Article  Google Scholar 

  • Rensch, B. (1948). Histological changes correlated with evolutionary changes in body size. Evolution, 2, 218–230.

    Article  CAS  PubMed  Google Scholar 

  • Riveros, A. J., & Gronenberg, W. (2010). Brain allometry and neural plasticity in the bumblebee Bombus terrestris. Brain, Behavior and Evolution, 75, 138–148.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt-Nielsen, K. (1984). Scaling: Why is animal size so important?. Cambridge: Cambridge Univ. Press.

    Book  Google Scholar 

  • Seid, M. A., Castillo, A., & Wcislo, W. T. (2011). The allometry of brain miniaturization in ants. Brain, Behavior and Evolution, 77(1), 5–13.

    Article  PubMed  Google Scholar 

  • Striedter, G. F. (2005). The principles of brain evolution. Inc, MA: Sinaur Assoc.

    Google Scholar 

  • von Bonin, G. (1937). Brain-weight and bodyweight of mammals. The Journal of General Psychology, 16, 379–389.

    Article  Google Scholar 

  • Warton, D. I., Duursma, R. A., Falster, D. S., & Taskinen, S. (2012). smatr 3 - an R package for estimation and inference about allometric lines. Methods in Ecology and Evolution, 3(2), 257–259.

    Article  Google Scholar 

  • Wehner, R. T., Fukushi, T., & Isler, K. (2007). On being small: brain allometry in ants. Brain Behav Evo., 69, 220–228.

    Article  Google Scholar 

  • Woude, E., Smid, H. M., Chittka, L., & Huigens, M. E. (2013). Breaking Haller’s rule: brain-body size isometry in a minute parasitic wasp. Brain, Behavior and Evolution, 81(2), 86–92.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey A. Polilov .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Polilov, A.A. (2016). Changes in Relative Size of Organs that Accompany Decrease in Body Size. In: At the Size Limit - Effects of Miniaturization in Insects. Springer, Cham. https://doi.org/10.1007/978-3-319-39499-2_10

Download citation

Publish with us

Policies and ethics