Skip to main content

Multidrug Efflux Pumps and Their Inhibitors Characterized by Computational Modeling

  • Chapter
  • First Online:
Efflux-Mediated Antimicrobial Resistance in Bacteria

Abstract

Antimicrobial resistance is a key public health concern of our era due to an ever-increasing number of drug-resistant pathogens, including several Gram-negative bacilli. The latter are endowed with a low permeable outer membrane and with numerous chromosomally encoded multidrug efflux pumps, which are not only ubiquitous but also polyspecific, thus recognizing a broad range of compounds. Efflux pumps are a major defense mechanism of these organisms against antimicrobials as they can significantly increase the levels of resistance by allowing time for the organisms to develop specific resistance mechanisms. One of the potential strategies to reinvigorate the efficacy of antimicrobials is by joint administration with efflux pump inhibitors, which either block the substrate binding and/or hinder any of the transport-dependent steps of the pumps. In this chapter, we provide an overview of multidrug resistance efflux pumps, their inhibition strategies, and the important findings from the various computational simulation studies reported to date with respect to the rational design of inhibitors and on deciphering their mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fauci AS (2001) Infectious diseases: considerations for the 21st century. Clin Infect Dis 32:675–685. doi:10.1086/319235

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization (2014) Antimicrobial resistance: global report on surveillance. World Health Organization, Geneva

    Google Scholar 

  3. Howell L (2013) Global risks 2013: an initiative of the risk response network, 8th edn. World Economic Forum, Geneva

    Google Scholar 

  4. Butler MS, Cooper MA (2011) Antibiotics in the clinical pipeline in 2011. J Antibiot (Tokyo) 64:413–425. doi:10.1038/ja.2011.44

    Article  CAS  Google Scholar 

  5. Nikaido H (1994) Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264:382–388. doi:10.1126/science.8153625

    Article  CAS  PubMed  Google Scholar 

  6. Poole K (2005) Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 56:20–51. doi:10.1093/jac/dki171

    Article  CAS  PubMed  Google Scholar 

  7. Piddock LJ (2006) Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 19:382–402. doi:10.1128/CMR.19.2.382-402.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nikaido H, Pagès JM (2012) Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol Rev 36:340–363. doi:10.1111/j.1574-6976.2011.00290.x

    Article  CAS  PubMed  Google Scholar 

  9. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13:42–51. doi:10.1038/nrmicro3380

    Article  CAS  PubMed  Google Scholar 

  10. Lomovskaya O, Bostian KA (2006) Practical applications and feasibility of efflux pump inhibitors in the clinic – a vision for applied use. Biochem Pharmacol 71:910–918. doi:10.1016/j.bcp.2005.12.008

    Article  CAS  PubMed  Google Scholar 

  11. Blair JM, Richmond GE, Piddock LJ (2014) Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol 9:1165–1177. doi:10.2217/fmb.14.66

    Article  CAS  PubMed  Google Scholar 

  12. Li X-Z, Nikaido H (2009) Efflux-mediated drug resistance in bacteria: an update. Drugs 69:1555–1623. doi:10.2165/11317030-000000000-00000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang H, Wang Y-J, Zhang Y-K, Wang D-S, Kathawala RJ, Patel A, Talele TT, Chen Z-S et al (2014) AST1306, a potent EGFR inhibitor, antagonizes ATP-binding cassette subfamily G member 2-mediated multidrug resistance. Cancer Lett 350:61–68. doi:10.1016/j.canlet.2014.04.008

    Article  CAS  PubMed  Google Scholar 

  14. Martinez L, Arnaud O, Henin E, Tao H, Chaptal V, Doshi R, Andrieu T, Dussurgey S et al (2014) Understanding polyspecificity within the substrate‐binding cavity of the human multidrug resistance P‐glycoprotein. FEBS J 281:673–682. doi:10.1111/febs.12613

    Article  CAS  PubMed  Google Scholar 

  15. Kim J-Y, Henrichs S, Bailly A, Vincenzetti V, Sovero V, Mancuso S, Pollmann S, Kim D et al (2010) Identification of an ABCB/P-glycoprotein-specific inhibitor of auxin transport by chemical genomics. J Biol Chem 285:23309–23317. doi:10.1074/jbc.M110.105981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Michaelis M, Rothweiler F, Nerreter T, Van Rikxoort M, Sharifi M, Wiese M, Ghafourian T, Cinatl J (2014) Differential effects of the oncogenic BRAF inhibitor PLX4032 (vemurafenib) and its progenitor PLX4720 on ABCB1 function. J Pharm Pharm Sci 17:154–168

    Article  PubMed  Google Scholar 

  17. Singh DV, Godbole MM, Misra K (2013) A plausible explanation for enhanced bioavailability of P-gp substrates in presence of piperine: simulation for next generation of P-gp inhibitors. J Mol Model 19:227–238. doi:10.1007/s00894-012-1535-8

    Article  CAS  PubMed  Google Scholar 

  18. Liu D-L, Li Y-J, Yao N, Xu J, Chen Z-S, Yiu A, Zhang C-X, Ye W-C et al (2014) Acerinol, a cyclolanstane triterpenoid from Cimicifuga acerina, reverses ABCB1-mediated multidrug resistance in HepG2/ADM and MCF-7/ADR cells. Eur J Pharmacol 733:34–44. doi:10.1016/j.ejphar.2014.03.043

    Article  CAS  PubMed  Google Scholar 

  19. Klepsch F, Vasanthanathan P, Ecker GF (2014) Ligand and structure-based classification models for prediction of P-glycoprotein inhibitors. J Chem Inf Model 54:218–229. doi:10.1021/ci400289j

    Article  CAS  PubMed  Google Scholar 

  20. Zha W, Wang G, Xu W, Liu X, Wang Y, Zha BS, Shi J, Zhao Q et al (2013) Inhibition of P-glycoprotein by HIV protease inhibitors increases intracellular accumulation of berberine in murine and human macrophages. PLoS One 8:e54349. doi:10.1371/journal.pone.0054349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao X-Q, Xie J-D, X-g C, Sim HM, Zhang X, Liang Y-J, Singh S, Talele TT et al (2012) Neratinib reverses ATP-binding cassette B1-mediated chemotherapeutic drug resistance in vitro, in vivo, and ex vivo. Mol Pharmacol 82:47–58. doi:10.1124/mol.111.076299

  22. Hamm R, Sugimoto Y, Steinmetz H, Efferth T (2014) Resistance mechanisms of cancer cells to the novel vacuolar H+-ATPase inhibitor archazolid B. Invest New Drugs 32:893–903. doi:10.1007/s10637-014-0134-1

  23. Matsson P, Pedersen JM, Norinder U, Bergström CA, Artursson P (2009) Identification of novel specific and general inhibitors of the three major human ATP-binding cassette transporters P-gp, BCRP and MRP2 among registered drugs. Pharm Res 26:1816–1831. doi:10.1007/s11095-009-9896-0

    Article  CAS  PubMed  Google Scholar 

  24. Abdelfatah SA, Efferth T (2015) Cytotoxicity of the indole alkaloid reserpine from Rauwolfia serpentina against drug-resistant tumor cells. Phytomedicine 22:308–318. doi:10.1016/j.phymed.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  25. Munagala S, Sirasani G, Kokkonda P, Phadke M, Krynetskaia N, Lu P, Sharom FJ, Chaudhury S et al (2014) Synthesis and evaluation of Strychnos alkaloids as MDR reversal agents for cancer cell eradication. Bioorg Med Chem 22:1148–1155. doi:10.1016/j.bmc.2013.12.022

    Article  CAS  PubMed  Google Scholar 

  26. Brewer FK, Follit CA, Vogel PD, Wise JG (2014) In silico screening for inhibitors of P-glycoprotein that target the nucleotide binding domains. Mol Pharmacol 86:716–726. doi:10.1124/mol.114.095414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kim N, Shin J-M, No KT (2014) In silico study on the interaction between P-glycoprotein and its inhibitors at the drug binding pocket. Bull Korean Chem Soc 35:2317–2325. doi:10.5012/bkcs.2014.35.8.2317

    Article  CAS  Google Scholar 

  28. Upadhyay HC, Dwivedi GR, Roy S, Sharma A, Darokar MP, Srivastava SK (2014) Phytol derivatives as drug resistance reversal agents. ChemMedChem 9:1860–1868. doi:10.1002/cmdc.201402027

    CAS  PubMed  Google Scholar 

  29. Zeino M, Saeed ME, Kadioglu O, Efferth T (2014) The ability of molecular docking to unravel the controversy and challenges related to P-glycoprotein – a well-known, yet poorly understood drug transporter. Invest New Drugs 32:618–625. doi:10.1007/s10637-014-0098-1

    Article  CAS  PubMed  Google Scholar 

  30. Silva R, Carmo H, Vilas-Boas V, Barbosa DJ, Palmeira A, Sousa E, Carvalho F, de Lourdes Bastos M et al (2014) Colchicine effect on P-glycoprotein expression and activity: in silico and in vitro studies. Chem Biol Interact 218:50–62. doi:10.1016/j.cbi.2014.04.009

  31. Kathawala RJ, Chen J-J, Zhang Y-K, Wang Y-J, Patel A, Wang D-S, Talele TT, Ashby CR et al (2014) Masitinib antagonizes ATP-binding cassette subfamily G member 2-mediated multidrug resistance. Int J Oncol 44:1634–1642. doi:10.3892/ijo.2014.2341

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Dwivedi GR, Upadhyay HC, Yadav DK, Singh V, Srivastava SK, Khan F, Darmwal NS, Darokar MP (2014) 4‐Hydroxy‐α‐tetralone and its derivative as drug resistance reversal agents in multi drug resistant Escherichia coli. Chem Biol Drug Des 83:482–492. doi:10.1111/cbdd.12263

    Article  CAS  PubMed  Google Scholar 

  33. Tajima Y, Nakagawa H, Tamura A, Kadioglu O, Satake K, Mitani Y, Murase H, Regasini LO et al (2014) Nitensidine A, a guanidine alkaloid from Pterogyne nitens, is a novel substrate for human ABC transporter ABCB1. Phytomedicine 21:323–332. doi:10.1016/j.phymed.2013.08.024

    Article  CAS  PubMed  Google Scholar 

  34. Tan W, Mei H, Chao L, Liu T, Pan X, Shu M, Yang L (2013) Combined QSAR and molecule docking studies on predicting P-glycoprotein inhibitors. J Comput Aided Mol Des 27:1067–1073. doi:10.1007/s10822-013-9697-8

    Article  CAS  PubMed  Google Scholar 

  35. Ferreira RJ, Ferreira M-JU, dos Santos DJ (2013) Molecular docking characterizes substrate-binding sites and efflux modulation mechanisms within P-glycoprotein. J Chem Inf Model 53:1747–1760. doi:10.1021/ci400195v

    Article  CAS  PubMed  Google Scholar 

  36. Tiwari AK, Sodani K, C-l D, Abuznait AH, Singh S, Xiao Z-J, Patel A, Talele TT et al (2013) Nilotinib potentiates anticancer drug sensitivity in murine ABCB1-, ABCG2-, and ABCC10-multidrug resistance xenograft models. Cancer Lett 328:307–317. doi:10.1016/j.canlet.2012.10.001

    Article  CAS  PubMed  Google Scholar 

  37. Chufan EE, Kapoor K, Sim H-M, Singh S, Talele TT, Durell SR, Ambudkar SV (2013) Multiple transport-active binding sites are available for a single substrate on human P-glycoprotein (ABCB1). PLoS One 8:e82463. doi:10.1371/journal.pone.0082463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kanaoka S, Kimura Y, Fujikawa M, Nakagawa Y, Ueda K, Akamatsu M (2013) Substrate recognition by P-glycoprotein efflux transporters: structure-ATPase activity relationship of diverse chemicals and agrochemicals. J Pest Sci 38:112–122. doi:10.1584/jpestics.D13-022

    Article  CAS  Google Scholar 

  39. Zhang D-M, Shu C, Chen J-J, Sodani K, Wang J, Bhatnagar J, Lan P, Ruan Z-X et al (2012) BBA, a derivative of 23-hydroxybetulinic acid, potently reverses ABCB1-mediated drug resistance in vitro and in vivo. Mol Pharm 9:3147–3159. doi:10.1021/mp300249s

  40. Dolghih E, Bryant C, Renslo AR, Jacobson MP (2011) Predicting binding to P-glycoprotein by flexible receptor docking. PLoS Comput Biol 7:e1002083. doi:10.1371/journal.pcbi.1002083

  41. Kalia NP, Mahajan P, Mehra R, Nargotra A, Sharma JP, Koul S, Khan IA (2012) Capsaicin, a novel inhibitor of the NorA efflux pump, reduces the intracellular invasion of Staphylococcus aureus. J Antimicrob Chemother 67:2401–2408. doi:10.1093/jac/dks232

    Article  CAS  PubMed  Google Scholar 

  42. Xiao Z-P, Wang X-D, Wang P-F, Zhou Y, Zhang J-W, Zhang L, Zhou J, Zhou S-S et al (2014) Design, synthesis, and evaluation of novel fluoroquinolone–flavonoid hybrids as potent antibiotics against drug-resistant microorganisms. Eur J Med Chem 80:92–100. doi:10.1016/j.ejmech.2014.04.037

    Article  CAS  PubMed  Google Scholar 

  43. George AM (1996) Multidrug resistance in enteric and other Gram-negative bacteria. FEMS Microbiol Lett 139:1–10. doi:10.1111/j.1574-6968.1996.tb08172.x

    Article  CAS  PubMed  Google Scholar 

  44. Pagès J-M, Amaral L (2009) Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of Gram-negative bacteria. Biochim Biophys Acta 1794:826–833. doi:10.1016/j.bbapap.2008.12.011

    Article  PubMed  CAS  Google Scholar 

  45. Upadhyay R (2011) Emergence of drug resistance in microbes, its dissemination and target modification of antibiotics: a life threatening problem to human society. Int J Pharm Biol Res 2:119–126

    Google Scholar 

  46. Utsui Y, Yokota T (1985) Role of an altered penicillin-binding protein in methicillin-and cephem-resistant Staphylococcus aureus. Antimicrob Agents Chemother 28:397–403. doi:10.1128/AAC.28.3.397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li X-Z, Plésiat P, Nikaido H (2015) The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 28:337–418. doi:10.1128/CMR.00117-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sapunaric FM, Aldema-Ramos M, McMurry LM (2005) Tetracycline resistance: efflux, mutation, and other mechanisms. In: White DG, Alekshun MN, McDermot PF (eds) Frontiers in antimicrobial resistance, a tribute to Stuart B. Levy. ASM Press, Washington, DC, pp 3–18

    Chapter  Google Scholar 

  49. Ruggerone P, Murakami S, Pos KM, Vargiu AV (2013) RND efflux pumps: structural information translated into function and inhibition mechanisms. Curr Top Med Chem 13:3079–3100. doi:10.2174/15680266113136660220

    Article  CAS  PubMed  Google Scholar 

  50. Blair JM, Bavro VN, Ricci V, Modi N, Cacciotto P, Kleinekathfer U, Ruggerone P, Vargiu AV et al (2015) AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity. Proc Natl Acad Sci U S A 112:3511–3516. doi:10.1073/pnas.1419939112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Piddock LJ (2006) Multidrug-resistance efflux pumps – not just for resistance. Nat Rev Microbiol 4:629–636. doi:10.1038/nrmicro1464

    Article  CAS  PubMed  Google Scholar 

  52. Rosner JL, Martin RG (2009) An excretory function for the Escherichia coli outer membrane pore TolC: upregulation of marA and soxS transcription and Rob activity due to metabolites accumulated in tolC mutants. J Bacteriol 191:5283–5292. doi:10.1128/JB.00507-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Paul S, Alegre KO, Holdsworth SR, Rice M, Brown JA, McVeigh P, Kelly SM, Law CJ (2014) A single-component multidrug transporter of the major facilitator superfamily is part of a network that protects Escherichia coli from bile salt stress. Mol Microbiol 92:872–884. doi:10.1111/mmi.12597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guelfo JR, Rodriguez-Rojas A, Matic I, Blazquez J (2010) A MATE-family efflux pump rescues the Escherichia coli 8-oxoguanine-repair-deficient mutator phenotype and protects against H2O2 killing. PLoS Genet 6:e1000931. doi:10.1371/journal.pgen.1000931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Bogomolnaya LM, Andrews KD, Talamantes M, Maple A, Ragoza Y, Vazquez-Torres A, Andrews-Polymenis H (2013) The ABC-type efflux pump MacAB protects Salmonella enterica serovar Typhimurium from oxidative stress. mBio 4:e00630-13. doi:10.1128/mBio.00630-13

  56. Poole K (2012) Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Trends Microbiol 20:227–234. doi:10.1016/j.tim.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  57. Podnecky NL, Rhodes KA, Schweizer HP (2015) Efflux pump-mediated drug resistance in Burkholderia. Front Microbiol 6:305. doi:10.3389/fmicb.2015.00305

  58. Baugh S, Phillips CR, Ekanayaka AS, Piddock LJ, Webber MA (2014) Inhibition of multidrug efflux as a strategy to prevent biofilm formation. J Antimicrob Chemother 69:673–681. doi:10.1093/jac/dkt420

    Article  CAS  PubMed  Google Scholar 

  59. Matsumura K, Furukawa S, Ogihara H, Morinaga Y (2011) Roles of multidrug efflux pumps on the biofilm formation of Escherichia coli K-12. Biocontrol Sci 16:69–72. doi:10.4265/bio.16.69

    Article  CAS  PubMed  Google Scholar 

  60. Saier MH Jr, Reddy VS, Tamang DG, Vastermark A (2014) The transporter classification database. Nucleic Acids Res 42:D251–D258. doi:10.1093/nar/gkt1097

    Article  CAS  PubMed  Google Scholar 

  61. Ren Q, Chen K, Paulsen IT (2007) TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res 35:D274–D279. doi:10.1093/nar/gkl925

    Article  CAS  PubMed  Google Scholar 

  62. Eswaran J, Koronakis E, Higgins MK, Hughes C, Koronakis V (2004) Three’s company: component structures bring a closer view of tripartite drug efflux pumps. Curr Opin Struct Biol 14:741–747. doi:10.1016/j.sbi.2004.10.003

    Article  CAS  PubMed  Google Scholar 

  63. Du D, van Veen HW, Murakami S, Pos KM, Luisi BF (2015) Structure, mechanism and cooperation of bacterial multidrug transporters. Curr Opin Struct Biol 33:76–91. doi:10.1016/j.sbi.2015.07.015

    Article  CAS  PubMed  Google Scholar 

  64. Higgins CF (2001) ABC transporters: physiology, structure and mechanism – an overview. Res Microbiol 152:205–210. doi:10.1016/S0923-2508(01)01193-7

    Article  CAS  PubMed  Google Scholar 

  65. Shapiro AB, Fox K, Lam P, Ling V (1999) Stimulation of P‐glycoprotein‐mediated drug transport by prazosin and progesterone. Eur J Biochem 259:841–850. doi:10.1046/j.1432-1327.1999.00098.x

    Article  CAS  PubMed  Google Scholar 

  66. Martin C, Berridge G, Higgins CF, Mistry P, Charlton P, Callaghan R (2000) Communication between multiple drug binding sites on P-glycoprotein. Mol Pharmacol 58:624–632. doi:10.1124/mol.58.3.624

    CAS  PubMed  Google Scholar 

  67. Higgins CF, Linton KJ (2004) The ATP switch model for ABC transporters. Nat Struct Mol Biol 11:918–926. doi:10.1038/nsmb836

    Article  CAS  PubMed  Google Scholar 

  68. Lu M, Symersky J, Radchenko M, Koide A, Guo Y, Nie R, Koide S (2013) Structures of a Na+-coupled, substrate-bound MATE multidrug transporter. Proc Natl Acad Sci U S A 110:2099–2104. doi:10.1073/pnas.1219901110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schuldiner S (2012) Undecided membrane proteins insert in random topologies. Up, down and sideways: it does not really matter. Trends Biochem Sci 37:215–219. doi:10.1016/j.tibs.2012.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Martin C, Berridge G, Mistry P, Higgins C, Charlton P, Callaghan R (2000) Drug binding sites on P-glycoprotein are altered by ATP binding prior to nucleotide hydrolysis. Biochemistry 39:11901–11906. doi:10.1021/bi000559b

    Article  CAS  PubMed  Google Scholar 

  71. McDevitt CA, Crowley E, Hobbs G, Starr KJ, Kerr ID, Callaghan R (2008) Is ATP binding responsible for initiating drug translocation by the multidrug transporter ABCG2? FEBS J 275:4354–4362. doi:10.1111/j.1742-4658.2008.06578.x

    Article  CAS  PubMed  Google Scholar 

  72. Yan N (2013) Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci 38:151–159. doi:10.1016/j.tibs.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  73. Lee A, Mao W, Warren MS, Mistry A, Hoshino K, Okumura R, Ishida H, Lomovskaya O (2000) Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. J Bacteriol 182:3142–3150. doi:10.1128/JB.182.11.3142-3150.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tal N, Schuldiner S (2009) A coordinated network of transporters with overlapping specificities provides a robust survival strategy. Proc Natl Acad Sci U S A 106:9051–9056. doi:10.1073/pnas.0902400106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lewinson O, Adler J, Sigal N, Bibi E (2006) Promiscuity in multidrug recognition and transport: the bacterial MFS Mdr transporters. Mol Microbiol 61:277–284. doi:10.1111/j.1365-2958.2006.05254.x

    Article  CAS  PubMed  Google Scholar 

  76. Fluman N, Ryan CM, Whitelegge JP, Bibi E (2012) Dissection of mechanistic principles of a secondary multidrug efflux protein. Mol Cell 47:777–787. doi:10.1016/j.molcel.2012.06.018

    Article  CAS  PubMed  Google Scholar 

  77. Nikaido H, Zgurskaya HI (1999) Antibiotic efflux mechanisms. Curr Opin Infect Dis 12:529–536

    Article  CAS  PubMed  Google Scholar 

  78. Kuroda T, Tsuchiya T (2009) Multidrug efflux transporters in the MATE family. Biochim Biophys Acta 1794:763–768. doi:10.1016/j.bbapap.2008.11.012

    Article  CAS  PubMed  Google Scholar 

  79. He X, Szewczyk P, Karyakin A, Evin M, Hong WX, Zhang Q, Chang G (2010) Structure of a cation-bound multidrug and toxic compound extrusion transporter. Nature 467:991–994. doi:10.1038/nature09408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tanaka Y, Hipolito CJ, Maturana AD, Ito K, Kuroda T, Higuchi T, Katoh T, Kato HE et al (2013) Structural basis for the drug extrusion mechanism by a MATE multidrug transporter. Nature 496:247–251. doi:10.1038/nature12014

    Article  CAS  PubMed  Google Scholar 

  81. Paulsen IT, Skurray RA, Tam R, Saier MH Jr, Turner RJ, Weiner JH, Goldberg EB, Grinius LL (1996) The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs. Mol Microbiol 19:1167–1175. doi:10.1111/j.1365-2958.1996.tb02462.x

    Article  CAS  PubMed  Google Scholar 

  82. Schuldiner S (2009) EmrE, a model for studying evolution and mechanism of ion-coupled transporters. Biochim Biophys Acta 1794:748–762. doi:10.1016/j.bbapap.2008.12.018

    Article  CAS  PubMed  Google Scholar 

  83. Pornillos O, Chen Y-J, Chen AP, Chang G (2005) X-ray structure of the EmrE multidrug transporter in complex with a substrate. Science 310:1950–1953. doi:10.1126/science.1119776

    Article  CAS  PubMed  Google Scholar 

  84. Chen YJ, Pornillos O, Lieu S, Ma C, Chen AP, Chang G (2007) X-ray structure of EmrE supports dual topology model. Proc Natl Acad Sci U S A 104:18999–19004. doi:10.1073/pnas.0709387104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Korkhov VM, Tate CG (2008) Electron crystallography reveals plasticity within the drug binding site of the small multidrug transporter EmrE. J Mol Biol 377:1094–1103. doi:10.1016/j.jmb.2008.01.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Morrison EA, DeKoster GT, Dutta S, Vafabakhsh R, Clarkson MW, Bahl A, Kern D, Ha T et al (2011) Antiparallel EmrE exports drugs by exchanging between asymmetric structures. Nature 481:45–50. doi:10.1038/nature10703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Rotem D, Schuldiner S (2004) EmrE, a multidrug transporter from Escherichia coli, transports monovalent and divalent substrates with the same stoichiometry. J Biol Chem 279:48787–48793. doi:10.1074/jbc.M408187200

    Article  CAS  PubMed  Google Scholar 

  88. Venter H, Mowla R, Ohene-Agyei T, Ma S (2015) RND-type drug efflux pumps from Gram-negative bacteria: molecular mechanism and inhibition. Front Microbiol 6:377. doi:10.3389/fmicb.2015.00377

    Article  PubMed  PubMed Central  Google Scholar 

  89. Saier M, Tam R, Reizer A, Reizer J (1994) Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol Microbiol 11:841–847. doi:10.1111/j.1365-2958.1994.tb00362.x

    Article  CAS  PubMed  Google Scholar 

  90. Nikaido H (1996) Multidrug efflux pumps of Gram-negative bacteria. J Bacteriol 178:5853–5859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dreier J, Ruggerone P (2015) Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Front Microbiol 6:660. doi:10.3389/fmicb.2015.00660

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sulavik MC, Houseweart C, Cramer C, Jiwani N, Murgolo N, Greene J, DiDomenico B, Shaw KJ et al (2001) Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob Agents Chemother 45:1126–1136. doi:10.1128/AAC.45.4.1126-1136.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Symmons MF, Bokma E, Koronakis E, Hughes C, Koronakis V (2009) The assembled structure of a complete tripartite bacterial multidrug efflux pump. Proc Natl Acad Sci U S A 106:7173–7178. doi:10.1073/pnas.0900693106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hobbs EC, Yin X, Paul BJ, Astarita JL, Storz G (2012) Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance. Proc Natl Acad Sci U S A 109:16696–16701. doi:10.1073/pnas.1210093109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Du D, Wang Z, James NR, Voss JE, Klimont E, Ohene-Agyei T, Venter H, Chiu W et al (2014) Structure of the AcrAB-TolC multidrug efflux pump. Nature 509:512–515. doi:10.1038/nature13205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Murakami S, Nakashima R, Yamashita E, Yamaguchi A (2002) Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419:587–593. doi:10.1038/nature01050

    Article  CAS  PubMed  Google Scholar 

  97. Sennhauser G, Bukowska MA, Briand C, Grutter MG (2009) Crystal structure of the multidrug exporter MexB from Pseudomonas aeruginosa. J Mol Biol 389:134–145. doi:10.1016/j.jmb.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  98. Murakami S, Nakashima R, Yamashita E, Matsumoto T, Yamaguchi A (2006) Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443:173–179. doi:10.1038/nature05076

    Article  CAS  PubMed  Google Scholar 

  99. Nakashima R, Sakurai K, Yamasaki S, Nishino K, Yamaguchi A (2011) Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature 480:565–569. doi:10.1038/nature10641

    CAS  PubMed  Google Scholar 

  100. Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT et al (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323:1718–1722. doi:10.1126/science.1168750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jara GE, Vera DMA, Pierini AB (2013) Binding of modulators to mouse and human multidrug resistance P-glycoprotein. A computational study. J Mol Graph Model 46:10–21. doi:10.1016/j.jmgm.2013.09.001

    Article  CAS  PubMed  Google Scholar 

  102. Wise JG (2012) Catalytic transitions in the human MDR1 P-glycoprotein drug binding sites. Biochemistry 51:5125–5141. doi:10.1021/bi300299z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gadhe CC, Kothandan G, Joo Cho S (2013) In silico study of desmosdumotin as an anticancer agent: homology modeling, docking and molecular dynamics simulation approach. Anti-Cancer Agents Med Chem 13:1636–1644. doi:10.2174/18715206113139990302

    Article  CAS  Google Scholar 

  104. Seeger MA, Schiefner A, Eicher T, Verrey F, Diederichs K, Pos KM (2006) Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313:1295–1298. doi:10.1126/science.1131542

    Article  CAS  PubMed  Google Scholar 

  105. Seeger MA, Diederichs K, Eicher T, Brandstatter L, Schiefner A, Verrey F, Pos KM (2008) The AcrB efflux pump: conformational cycling and peristalsis lead to multidrug resistance. Curr Drug Targets 9:729–749. doi:10.2174/138945008785747789

    Article  CAS  PubMed  Google Scholar 

  106. Murakami S (2008) Multidrug efflux transporter, AcrB – the pumping mechanism. Curr Opin Struct Biol 18:459–465. doi:10.1016/j.sbi.2008.06.007

    Article  CAS  PubMed  Google Scholar 

  107. Nakashima R, Sakurai K, Yamasaki S, Nishino K, Yamaguchi A (2011) Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature 480:565–569. doi:10.1038/nature10641

  108. Eicher T, Cha HJ, Seeger MA, Brandstatter L, El-Delik J, Bohnert JA, Kern WV, Verrey F et al (2012) Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proc Natl Acad Sci U S A 109:5687–5692. doi:10.1073/pnas.1114944109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pos KM (2009) Drug transport mechanism of the AcrB efflux pump. Biochim Biophys Acta 1794:782–793. doi:10.1016/j.bbapap.2008.12.015

    Article  CAS  PubMed  Google Scholar 

  110. Nikaido H, Basina M, Nguyen V, Rosenberg EY (1998) Multidrug efflux pump AcrAB of Salmonella typhimurium excretes only those β-lactam antibiotics containing lipophilic side chains. J Bacteriol 180:4686–4692

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Husain F, Bikhchandani M, Nikaido H (2011) Vestibules are part of the substrate path in the multidrug efflux transporter AcrB of Escherichia coli. J Bacteriol 193:5847–5849. doi:10.1128/JB.05759-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wong K, Ma J, Rothnie A, Biggin PC, Kerr ID (2014) Towards understanding promiscuity in multidrug efflux pumps. Trends Biochem Sci 39:8–16. doi:10.1016/j.tibs.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  113. Zechini B, Versace I (2009) Inhibitors of multidrug resistant efflux systems in bacteria. Recent Pat Antiinfect Drug Discov 4:37–50. doi:10.2174/157489109787236256

    Article  CAS  PubMed  Google Scholar 

  114. Sun J, Deng Z, Yan A (2014) Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun 453:254–267. doi:10.1016/j.bbrc.2014.05.090

    Article  CAS  PubMed  Google Scholar 

  115. Hirakata Y, Kondo A, Hoshino K, Yano H, Arai K, Hirotani A, Kunishima H, Yamamoto N et al (2009) Efflux pump inhibitors reduce the invasiveness of Pseudomonas aeruginosa. Int J Antimicrob Agents 34:343–346. doi:10.1016/j.ijantimicag.2009.06.007

    Article  CAS  PubMed  Google Scholar 

  116. Bhardwaj AK, Mohanty P (2012) Bacterial efflux pumps involved in multidrug resistance and their inhibitors: rejuvinating the antimicrobial chemotherapy. Recent Pat Antiinfect Drug Discov 7:73–89. doi:10.2174/157489112799829710

    Article  CAS  PubMed  Google Scholar 

  117. Grkovic S, Brown MH, Skurray RA (2002) Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 66:671–701. doi:10.1128/MMBR.66.4.671-701.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wilke MS, Heller M, Creagh AL, Haynes CA, McIntosh LP, Poole K, Strynadka NC (2008) The crystal structure of MexR from Pseudomonas aeruginosa in complex with its antirepressor ArmR. Proc Natl Acad Sci U S A 105:14832–14837. doi:10.1073/pnas.0805489105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Starr LM, Fruci M, Poole K (2012) Pentachlorophenol induction of the Pseudomonas aeruginosa mexAB-oprM efflux operon: involvement of repressors NalC and MexR and the antirepressor ArmR. PLoS One 7:e32684. doi:10.1371/journal.pone.0032684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hay T, Fraud S, Lau CH, Gilmour C, Poole K (2013) Antibiotic inducibility of the mexXY multidrug efflux operon of Pseudomonas aeruginosa: involvement of the MexZ anti-repressor ArmZ. PLoS One 8:e56858. doi:10.1371/journal.pone.0056858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Purssell A, Poole K (2013) Functional characterization of the NfxB repressor of the mexCD-oprJ multidrug efflux operon of Pseudomonas aeruginosa. Microbiology 159:2058–2073. doi:10.1099/mic.0.069286-0

    Article  CAS  PubMed  Google Scholar 

  122. Lau CH, Hughes D, Poole K (2014) MexY-promoted aminoglycoside resistance in Pseudomonas aeruginosa: involvement of a putative proximal binding pocket in aminoglycoside recognition. mBio 5:e01068–14. doi:10.1128/mBio.01068-14

  123. Lomovskaya O, Lewis K, Matin A (1995) EmrR is a negative regulator of the Escherichia coli multidrug resistance pump EmrAB. J Bacteriol 177:2328–2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rice A, Liu Y, Michaelis ML, Himes RH, Georg GI, Audus KL (2005) Chemical modification of paclitaxel (Taxol) reduces P-glycoprotein interactions and increases permeation across the blood-brain barrier in vitro and in situ. J Med Chem 48:832–838. doi:10.1021/jm040114b

  125. Chopra I (2002) New developments in tetracycline antibiotics: glycylcyclines and tetracycline efflux pump inhibitors. Drug Resist Updat 5:119–125. doi:10.1016/S1368-7646(02)00051-1

  126. Chollet R, Chevalier J, Bryskier A, Pagès JM (2004) The AcrAB-TolC pump is involved in macrolide resistance but not in telithromycin efflux in Enterobacter aerogenes and Escherichia coli. Antimicrob Agents Chemother 48:3621–3624. doi:10.1128/AAC.48.9.3621-3624.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hooper DC (2000) Mechanisms of action and resistance of older and newer fluoroquinolones. Clin Infect Dis 31(Suppl 2):S24–S28. doi:10.1086/314056

    Article  CAS  PubMed  Google Scholar 

  128. Pagès JM, Masi M, Barbe J (2005) Inhibitors of efflux pumps in Gram-negative bacteria. Trends Mol Med 11:382–389. doi:10.1016/j.molmed.2005.06.006

    Article  PubMed  CAS  Google Scholar 

  129. Marquez B (2005) Bacterial efflux systems and efflux pumps inhibitors. Biochimie 87:1137–1147. doi:10.1016/j.biochi.2005.04.012

    Article  CAS  PubMed  Google Scholar 

  130. Lynch AS (2006) Efflux systems in bacterial pathogens: an opportunity for therapeutic intervention? An industry view. Biochem Pharmacol 71:949–956. doi:10.1016/j.bcp.2005.10.021

    Article  CAS  PubMed  Google Scholar 

  131. Mahamoud A, Chevalier J, Alibert-Franco S, Kern WV, Pagès J-M (2007) Antibiotic efflux pumps in Gram-negative bacteria: the inhibitor response strategy. J Antimicrob Chemother 59:1223–1229. doi:10.1093/jac/dkl493

    Article  CAS  PubMed  Google Scholar 

  132. Nakashima R, Sakurai K, Yamasaki S, Hayashi K, Nagata C, Hoshino K, Onodera Y, Nishino K et al (2013) Structural basis for the inhibition of bacterial multidrug exporters. Nature 500:102–106. doi:10.1038/nature12300

    Article  CAS  PubMed  Google Scholar 

  133. Opperman TJ, Kwasny SM, Kim HS, Nguyen ST, Houseweart C, D'Souza S, Walker GC, Peet NP et al (2014) Characterization of a novel pyranopyridine inhibitor of the AcrAB efflux pump of Escherichia coli. Antimicrob Agents Chemother 58:722–733. doi:10.1128/AAC.01866-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Nguyen ST, Kwasny SM, Ding X, Cardinale SC, McCarthy CT, Kim H-S, Nikaido H, Peet NP et al (2015) Structure–activity relationships of a novel pyranopyridine series of Gram-negative bacterial efflux pump inhibitors. Bioorg Med Chem 23:2024–2034. doi:10.1016/j.bmc.2015.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Opperman TJ, Nguyen ST (2015) Recent advances toward a molecular mechanism of efflux pump inhibition. Front Microbiol 6:421. doi:10.3389/fmicb.2015.00421

    Article  PubMed  PubMed Central  Google Scholar 

  136. Viveiros M, Jesus A, Brito M, Leandro C, Martins M, Ordway D, Molnar AM, Molnar J et al (2005) Inducement and reversal of tetracycline resistance in Escherichia coli K-12 and expression of proton gradient-dependent multidrug efflux pump genes. Antimicrob Agents Chemother 49:3578–3582. doi:10.1128/AAC.49.8.3578-3582.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Martins M, Dastidar SG, Fanning S, Kristiansen JE, Molnar J, Pagès JM, Schelz Z, Spengler G et al (2008) Potential role of non-antibiotics (helper compounds) in the treatment of multidrug-resistant Gram-negative infections: mechanisms for their direct and indirect activities. Int J Antimicrob Agents 31:198–208. doi:10.1016/j.ijantimicag.2007.10.025

  138. Li X-Z, Nikaido H (2004) Efflux-mediated drug resistance in bacteria. Drugs 64:159–204. doi:10.2165/00003495-200464020-00004

    Article  CAS  PubMed  Google Scholar 

  139. Kourtesi C, Ball AR, Huang Y-Y, Jachak SM, Vera DMA, Khondkar P, Gibbons S, Hamblin MR et al (2013) Microbial efflux systems and inhibitors: approaches to drug discovery and the challenge of clinical implementation. Open Microbiol J 7:34–52. doi:10.2174/1874285801307010034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tikhonova EB, Yamada Y, Zgurskaya HI (2011) Sequential mechanism of assembly of multidrug efflux pump AcrAB-TolC. Chem Biol 18:454–463. doi:10.1016/j.chembiol.2011.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zeng B, Wang H, Zou L, Zhang A, Yang X, Guan Z (2010) Evaluation and target validation of indole derivatives as inhibitors of the AcrAB-TolC efflux pump. Biosci Biotechnol Biochem 74:2237–2241. doi:10.1271/bbb.100433

  142. Andersen C, Koronakis E, Hughes C, Koronakis V (2002) An aspartate ring at the TolC tunnel entrance determines ion selectivity and presents a target for blocking by large cations. Mol Microbiol 44:1131–1139. doi:10.1046/j.1365-2958.2002.02898.x

    Article  CAS  PubMed  Google Scholar 

  143. Chevalier J, Mulfinger C, Garnotel E, Nicolas P, Davin-Regli A, Pagès JM (2008) Identification and evolution of drug efflux pump in clinical Enterobacter aerogenes strains isolated in 1995 and 2003. PLoS One 3:e3203. doi:10.1371/journal.pone.0003203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Yamaguchi A, Nakashima R, Sakurai K (2015) Structural basis of RND-type multidrug exporters. Front Microbiol 6:327. doi:10.3389/fmicb.2015.00327

    Article  PubMed  PubMed Central  Google Scholar 

  145. Du D, van Veen HW, Luisi BF (2015) Assembly and operation of bacterial tripartite multidrug efflux pumps. Trends Microbiol 23:311–319. doi:10.1016/j.tim.2015.01.010

    Article  CAS  PubMed  Google Scholar 

  146. Van Bambeke F, Lee VJ (2006) Inhibitors of bacterial efflux pumps as adjuvants in antibiotic treatments and diagnostic tools for detection of resistance by efflux. Recent Pat Antiinfect Drug Discov 1:157–175. doi:10.2174/157489106777452692

  147. Schwede T, Peitsch M (2008) Computational structural biology: methods and applications. World Scientific Publishing Co. Pte. Ltd., Singapore

    Book  Google Scholar 

  148. Halperin I, Ma B, Wolfson H, Nussinov R (2002) Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins 47:409–443. doi:10.1002/prot.10115

    Article  CAS  PubMed  Google Scholar 

  149. van Dijk AD, Boelens R, Bonvin AM (2005) Data‐driven docking for the study of biomolecular complexes. FEBS J 272:293–312. doi:10.1111/j.1742-4658.2004.04473.x

    Article  PubMed  CAS  Google Scholar 

  150. van Dijk AD, Bonvin AM (2006) Solvated docking: introducing water into the modelling of biomolecular complexes. Bioinformatics 22:2340–2347. doi:10.1093/bioinformatics/btl395

    Article  PubMed  Google Scholar 

  151. Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Šali A (2000) Comparative protein structure modeling of genes and genomes. Ann Rev Biophys Biomol Struct 29:291–325. doi:10.1146/annurev.biophys.29.1.291

    Article  Google Scholar 

  152. Šali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815. doi:10.1006/jmbi.1993.1626

    Article  PubMed  Google Scholar 

  153. Eswar N, Webb B, Marti‐Renom MA, Madhusudhan M, Eramian D, Shen M, Pieper U, Sali A (2006) Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics 15:5.6.1–5.6.30. doi:10.1002/0471250953.bi0506s15

    Article  Google Scholar 

  154. Salam NK, Nuti R, Sherman W (2009) Novel method for generating structure-based pharmacophores using energetic analysis. J Chem Inf Model 49:2356–2368. doi:10.1021/ci900212v

    Article  CAS  PubMed  Google Scholar 

  155. Joseph-McCarthy D (1999) Computational approaches to structure-based ligand design. Pharmacol Ther 84:179–191. doi:10.1016/S0163-7258(99)00031-5

    Article  CAS  PubMed  Google Scholar 

  156. Lyne PD (2002) Structure-based virtual screening: an overview. Drug Discov Today 7:1047–1055. doi:10.1016/S1359-6446(02)02483-2

    Article  CAS  PubMed  Google Scholar 

  157. Galeazzi R (2009) Molecular dynamics as a tool in rational drug design: current status and some major applications. Curr Comput Aided Drug Des 5:225–240. doi:10.2174/157340909789577847

    Article  CAS  Google Scholar 

  158. Ferreira RJ, Ferreira M-JU, dos Santos DJ (2012) Insights on P-glycoprotein’s efflux mechanism obtained by molecular dynamics simulations. J Chem Theory Comput 8:1853–1864. doi:10.1021/ct300083m

    Article  CAS  PubMed  Google Scholar 

  159. Ruggerone P, Vargiu AV, Collu F, Fischer N, Kandt C (2013) Molecular dynamics computer simulations of multidrug RND efflux pumps. Comput Struct Biotechnol J 5:e201302008. doi:10.5936/csbj.201302008

    Article  PubMed  PubMed Central  Google Scholar 

  160. Schlitter J, Engels M, Krüger P (1994) Targeted molecular dynamics: a new approach for searching pathways of conformational transitions. J Mol Graph 12:84–89. doi:10.1016/0263-7855(94)80072-3

    Article  CAS  PubMed  Google Scholar 

  161. Izvekov S, Voth GA (2005) A multiscale coarse-graining method for biomolecular systems. J Phys Chem B 109:2469–2473. doi:10.1021/jp044629q

    Article  CAS  PubMed  Google Scholar 

  162. Takada S (2012) Coarse-grained molecular simulations of large biomolecules. Curr Opin Struct Biol 22:130–137. doi:10.1016/j.sbi.2012.01.010

    Article  CAS  PubMed  Google Scholar 

  163. Parkin J, Chavent M, Khalid S (2015) Molecular simulations of Gram-negative bacterial membranes: a vignette of some recent successes. Biophys J 109:461–468. doi:10.1016/j.bpj.2015.06.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Collu F, Cascella M (2013) Multidrug resistance and efflux pumps: insights from molecular dynamics simulations. Curr Top Med Chem 13:3165–3183. doi:10.2174/15680266113136660224

    Article  CAS  PubMed  Google Scholar 

  165. Ohene‐Agyei T, Mowla R, Rahman T, Venter H (2014) Phytochemicals increase the antibacterial activity of antibiotics by acting on a drug efflux pump. Microbiol Open 3:885–896. doi:10.1002/mbo3.212

    Article  CAS  Google Scholar 

  166. Aparna V, Dineshkumar K, Mohanalakshmi N, Velmurugan D, Hopper W (2014) Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation. PLoS One 9:e101840. doi:10.1371/journal.pone.0101840

  167. Takatsuka Y, Chen C, Nikaido H (2010) Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli. Proc Natl Acad Sci U S A 107:6559–6565. doi:10.1073/pnas.1001460107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Vargiu AV, Nikaido H (2012) Multidrug binding properties of the AcrB efflux pump characterized by molecular dynamics simulations. Proc Natl Acad Sci U S A 109:20637–20642. doi:10.1073/pnas.1218348109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Vargiu AV, Ruggerone P, Opperman TJ, Nguyen ST, Nikaido H (2014) Molecular mechanism of MBX2319 inhibition of Escherichia coli AcrB multidrug efflux pump and comparison with other inhibitors. Antimicrob Agents Chemother 58:6224–6234. doi:10.1128/AAC.03283-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Feng Z, Hou T, Li Y (2012) Unidirectional peristaltic movement in multisite drug binding pockets of AcrB from molecular dynamics simulations. Mol Biosyst 8:2699–2709. doi:10.1039/c2mb25184a

    Article  CAS  PubMed  Google Scholar 

  171. Vargiu AV, Collu F, Schulz R, Pos KM, Zacharias M, Kleinekathofer U, Ruggerone P (2011) Effect of the F610A mutation on substrate extrusion in the AcrB transporter: explanation and rationale by molecular dynamics simulations. J Am Chem Soc 133:10704–10707. doi:10.1021/ja202666x

    Article  CAS  PubMed  Google Scholar 

  172. Bohnert JA, Schuster S, Seeger MA, Fahnrich E, Pos KM, Kern WV (2008) Site-directed mutagenesis reveals putative substrate binding residues in the Escherichia coli RND efflux pump AcrB. J Bacteriol 190:8225–8229. doi:10.1128/JB.00912-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Sjuts H, Vargiu AV, Kwasny SM, Nguyen ST, Kim H-S, Ding X, Ornik AR, Ruggerone P et al (2016) Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives. Proc Natl Acad Sci U S A 113:3509–3514. doi:10.1073/pnas.1602472113

  174. Yilmaz S, Altinkanat-Gelmez G, Bolelli K, Guneser-Merdan D, Ufuk Over-Hasdemir M, Aki-Yalcin E, Yalcin I (2015) Binding site feature description of 2-substituted benzothiazoles as potential AcrAB-TolC efflux pump inhibitors in E. coli. SAR QSAR Environ Res 26:853–871. doi:10.1080/1062936X.2015.1106581

    Article  CAS  PubMed  Google Scholar 

  175. Kinana AD, Vargiu AV, May T, Nikaido H (2016) Aminoacyl β-naphthylamides as substrates and modulators of AcrB multidrug efflux pump. Proc Natl Acad Sci U S A 113:1405–1410. doi:10.1073/pnas.1525143113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. van Veen HW, Venema K, Bolhuis H, Oussenko I, Kok J, Poolman B, Driessen AJ, Konings WN (1996) Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1. Proc Natl Acad Sci U S A 93:10668–10672

    Article  PubMed  PubMed Central  Google Scholar 

  177. Reuter G, Janvilisri T, Venter H, Shahi S, Balakrishnan L, van Veen HW (2003) The ATP binding cassette multidrug transporter LmrA and lipid transporter MsbA have overlapping substrate specificities. J Biol Chem 278:35193–35198. doi:10.1074/jbc.M306226200

    Article  CAS  PubMed  Google Scholar 

  178. Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364. doi:10.1128/MMBR.00031-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Vandevuer S, Van Bambeke F, Tulkens PM, Prévost M (2006) Predicting the three‐dimensional structure of human P‐glycoprotein in absence of ATP by computational techniques embodying crosslinking data: insight into the mechanism of ligand migration and binding sites. Proteins 63:466–478. doi:10.1002/prot.20892

    Article  CAS  PubMed  Google Scholar 

  180. Pajeva IK, Wiese M (2002) Pharmacophore model of drugs involved in P-glycoprotein multidrug resistance: explanation of structural variety (hypothesis). J Med Chem 45:5671–5686. doi:10.1021/jm020941h

    Article  CAS  PubMed  Google Scholar 

  181. Klepsch F, Chiba P, Ecker GF (2011) Exhaustive sampling of docking poses reveals binding hypotheses for propafenone type inhibitors of P-glycoprotein. PLoS Comput Biol 7:e1002036. doi:10.1371/journal.pcbi.1002036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Liu M, Hou T, Feng Z, Li Y (2013) The flexibility of P-glycoprotein for its poly-specific drug binding from molecular dynamics simulations. J Biomol Struct Dyn 31:612–629. doi:10.1080/07391102.2012.706079

    Article  CAS  PubMed  Google Scholar 

  183. Ma J, Biggin PC (2013) Substrate versus inhibitor dynamics of P‐glycoprotein. Proteins 81:1653–1668. doi:10.1002/prot.24324

    Article  CAS  PubMed  Google Scholar 

  184. Dawson RJP, Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443:180–185. doi:10.1038/nature05155

    Article  CAS  PubMed  Google Scholar 

  185. Prajapati R, Sangamwar AT (2014) Translocation mechanism of P-glycoprotein and conformational changes occurring at drug-binding site: insights from multi-targeted molecular dynamics. Biochim Biophys Acta 1838:2882–2898. doi:10.1016/j.bbamem.2014.07.018

    Article  CAS  PubMed  Google Scholar 

  186. Tardia P, Stefanachi A, Niso M, Stolfa DA, Mangiatordi GF, Alberga D, Nicolotti O, Lattanzi G et al (2014) Trimethoxybenzanilide-based P-glycoprotein modulators: an interesting case of lipophilicity tuning by intramolecular hydrogen bonding. J Med Chem 57:6403–6418. doi:10.1021/jm500697c

    Article  CAS  PubMed  Google Scholar 

  187. Singh S, Mandlik V (2015) Structure based investigation on the binding interaction of transport proteins in leishmaniasis: insights from molecular simulation. Mol Biol Syst 11:1251–1259. doi:10.1039/c4mb00713a

    CAS  Google Scholar 

  188. Tomkiewicz D, Casadei G, Larkins-Ford J, Moy TI, Garner J, Bremner JB, Ausubel FM, Lewis K et al (2010) Berberine-INF55 (5-nitro-2-phenylindole) hybrid antimicrobials: effects of varying the relative orientation of the berberine and INF55 components. Antimicrob Agents Chemother 54:3219–3224. doi:10.1128/AAC.01715-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research leading to the results discussed here was partly conducted as part of the Translocation Consortium (http://www.translocation.eu) and has received support from the Innovative Medicines Initiative Joint Undertaking under Grant Agreement no. 115525, resources that are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007–2013) and EFPIA companies in kind contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attilio V. Vargiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ramaswamy, V.K., Cacciotto, P., Malloci, G., Ruggerone, P., Vargiu, A.V. (2016). Multidrug Efflux Pumps and Their Inhibitors Characterized by Computational Modeling. In: Li, XZ., Elkins, C., Zgurskaya, H. (eds) Efflux-Mediated Antimicrobial Resistance in Bacteria. Adis, Cham. https://doi.org/10.1007/978-3-319-39658-3_30

Download citation

Publish with us

Policies and ethics