Skip to main content

The Different Faces of the Pancreatic Islet

  • Chapter
  • First Online:
Pancreatic Islet Isolation

Abstract

Type 1 diabetes (T1D) patients who receive pancreatic islet transplant experience significant improvement in their quality-of-life. This comes primarily through improved control of blood sugar levels, restored awareness of hypoglycemia, and prevention of serious and potentially life-threatening diabetes-associated complications, such as kidney failure, heart and vascular disease, stroke, nerve damage, and blindness. Therefore, beta cell replacement through transplantation of isolated islets is an important option in the treatment of T1D. However, lasting success of this promising therapy depends on durable survival and efficacy of the transplanted islets, which are directly influenced by the islet isolation procedures. Thus, isolating pancreatic islets with consistent and reliable quality is critical in the clinical application of islet transplantation.

Quality of isolated islets is important in pre-clinical studies as well, as efforts to advance and improve clinical outcomes of islet transplant therapy have relied heavily on animal models ranging from rodents, to pigs, to nonhuman primates. As a result, pancreatic islets have been isolated from these and other species and used in a variety of in vitro or in vivo applications for this and other research purposes. Protocols for islet isolation have been somewhat similar across species, especially, in mammals. However, given the increasing evidence about the distinct structural and functional features of human and mouse islets, using similar methods of islet isolation may contribute to inconsistencies in the islet quality, immunogenicity, and experimental outcomes. This may also contribute to the discrepancies commonly observed between pre-clinical findings and clinical outcomes. Therefore, it is prudent to consider the particular features of pancreatic islets from different species when optimizing islet isolation protocols.

In this chapter, we explore the structural and functional features of pancreatic islets from mice, pigs, nonhuman primates, and humans because of their prevalent use in nonclinical, preclinical, and clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grauslund J. Eye complications and markers of morbidity and mortality in long-term type 1 diabetes. Acta Ophthalmol. 2011;89(Thesis 1):1–19.

    Article  PubMed  Google Scholar 

  2. Scheen AJ. Pharmacokinetics and clinical use of incretin-based therapies in patients with chronic kidney disease and type 2 diabetes. Clin Pharmacokinet. 2014;53:773–85.

    Article  CAS  PubMed  Google Scholar 

  3. Narayan KM, Boyle JP, Geiss LS, Saaddine JB, Thompson TJ. Impact of recent increase in incidence on future diabetes burden: U.S., 2005–2050. Diabetes Care. 2006;29(9):2114–6.

    Article  PubMed  Google Scholar 

  4. Pugliese A. The multiple origins of type 1 diabetes. Diabet Med. 2013;30(2):135–46.

    Article  CAS  PubMed  Google Scholar 

  5. Abdulreda MH, Berggren PO. Islet inflammation in plain sight. Diabetes Obes Metab. 2013;15 Suppl 3:105–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hokanson JE, Kinney GL, Cheng S, Erlich HA, Kretowski A, Rewers M. Susceptibility to type 1 diabetes is associated with ApoCIII gene haplotypes. Diabetes. 2006;55(3):834–8.

    Article  CAS  PubMed  Google Scholar 

  7. de Luca C, Olefsky JM. Inflammation and insulin resistance. FEBS Lett. 2008;582(1):97–105.

    Article  PubMed  CAS  Google Scholar 

  8. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116(7):1793–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bruun JM, Helge JW, Richelsen B, Stallknecht B. Diet and exercise reduce low-grade inflammation and macrophage infiltration in adipose tissue but not in skeletal muscle in severely obese subjects. Am J Physiol Endocrinol Metab. 2006;290(5):E961–7.

    Article  CAS  PubMed  Google Scholar 

  10. Kim D, Kim J, Yoon JH, Ghim J, Yea K, Song P, et al. CXCL12 secreted from adipose tissue recruits macrophages and induces insulin resistance in mice. Diabetologia. 2014;57(7):1456–65.

    Article  CAS  PubMed  Google Scholar 

  11. Olivieri O, Martinelli N, Bassi A, Trabetti E, Girelli D, Pizzolo F, et al. ApoE epsilon2/epsilon3/epsilon4 polymorphism, ApoC-III/ApoE ratio and metabolic syndrome. Clin Exp Med. 2007;7(4):164–72.

    Article  CAS  PubMed  Google Scholar 

  12. Caron S, Verrijken A, Mertens I, Samanez CH, Mautino G, Haas JT, et al. Transcriptional activation of apolipoprotein CIII expression by glucose may contribute to diabetic dyslipidemia. Arterioscler Thromb Vasc Biol. 2011;31(3):513–9.

    Article  CAS  PubMed  Google Scholar 

  13. Oluleye TS. Diabetic retinopathy: current developments in pathogenesis and management. Afr J Med Med Sci. 2010;39(3):199–206.

    CAS  PubMed  Google Scholar 

  14. Eguchi K, Manabe I, Oishi-Tanaka Y, Ohsugi M, Kono N, Ogata F, et al. Saturated fatty acid and TLR signaling link β cell dysfunction and islet inflammation. Cell Metab. 2012;15(4):518–33.

    Article  CAS  PubMed  Google Scholar 

  15. Timper K, Donath MY. Diabetes mellitus type 2 – the new face of an old lady. Swiss Med Wkly. 2012;142:w13635.

    PubMed  Google Scholar 

  16. Staels W, Heremans Y, Heimberg H. Reprogramming of human exocrine pancreas cells to beta cells. Best Pract Res Clin Endocrinol Metab. 2015;29(6):849–57.

    Article  PubMed  Google Scholar 

  17. Stanojevic V, Habener JF. Evolving function and potential of pancreatic alpha cells. Best Pract Res Clin Endocrinol Metab. 2015;29(6):859–71.

    Article  CAS  PubMed  Google Scholar 

  18. Mehrfarjam Z, Esmaeili F, Shabani L, Ebrahimie E. Induction of pancreatic beta cell gene expression in mesenchymal stem cells. Cell Biol Int. 2016;40(5):486–500.

    Google Scholar 

  19. Assouline-Thomas B, Ellis D, Petropavlovskaia M, Makhlin J, Ding J, Rosenberg L. Islet Neogenesis Associated Protein (INGAP) induces the differentiation of an adult human pancreatic ductal cell line into insulin-expressing cells through stepwise activation of key transcription factors for embryonic beta cell development. Differentiation. 2015;90:77–90.

    Article  CAS  PubMed  Google Scholar 

  20. Shapiro A, Ricordi C, Hering B, Auchincloss H, Lindblad R, Robertson R, et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med. 2006;355(13):1318–30.

    Article  CAS  PubMed  Google Scholar 

  21. Froud T, Ricordi C, Baidal DA, Hafiz MM, Ponte G, Cure P, et al. Islet transplantation in type 1 diabetes mellitus using cultured islets and steroid-free immunosuppression: Miami experience. Am J Transplant. 2005;5(8):2037–46.

    Article  PubMed  Google Scholar 

  22. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343(4):230–8.

    Article  CAS  PubMed  Google Scholar 

  23. Hogan A, Pileggi A, Ricordi C. Transplantation: current developments and future directions; the future of clinical islet transplantation as a cure for diabetes. Front Biosci. 2008;13:1192–205.

    Article  CAS  PubMed  Google Scholar 

  24. Ricordi C, Strom TB. Clinical islet transplantation: advances and immunological challenges. Nat Rev Immunol. 2004;4(4):259–68.

    Article  CAS  PubMed  Google Scholar 

  25. Pileggi A, Ricordi C, Kenyon NS, Froud T, Baidal DA, Kahn A, et al. Twenty years of clinical islet transplantation at the Diabetes Research Institute – University of Miami. Clin Transplant. 2004:177–204.

    Google Scholar 

  26. Johansson H, Lukinius A, Moberg L, Lundgren T, Berne C, Foss A, et al. Tissue factor produced by the endocrine cells of the islets of Langerhans is associated with a negative outcome of clinical islet transplantation. Diabetes. 2005;54(6):1755–62.

    Article  CAS  PubMed  Google Scholar 

  27. Moberg L, Johansson H, Lukinius A, Berne C, Foss A, Kallen R, et al. Production of tissue factor by pancreatic islet cells as a trigger of detrimental thrombotic reactions in clinical islet transplantation. Lancet. 2002;360(9350):2039–45.

    Article  CAS  PubMed  Google Scholar 

  28. Loganathan G, Dawra RK, Pugazhenthi S, Guo Z, Soltani SM, Wiseman A, et al. Insulin degradation by acinar cell proteases creates a dysfunctional environment for human islets before/after transplantation: benefits of α-1 antitrypsin treatment. Transplantation. 2011;92(11):1222–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Linetsky E, Inverardi L, Kenyon NS, Alejandro R, Ricordi C. Endotoxin contamination of reagents used during isolation and purification of human pancreatic islets. Transplant Proc. 1998;30(2):345–6.

    Article  CAS  PubMed  Google Scholar 

  30. Inverardi L, Linetsky E, Kenyon NS, Socci C, Ricordi C. Human mixed lymphocyte-islet cultures: the influence of heterologous proteins on islet immunogenicity. Transplant Proc. 1997;29(4):2066.

    Article  CAS  PubMed  Google Scholar 

  31. Balamurugan AN, He J, Guo F, Stolz DB, Bertera S, Geng X, et al. Harmful delayed effects of exogenous isolation enzymes on isolated human islets: relevance to clinical transplantation. Am J Transplant. 2005;5(11):2671–81.

    Article  CAS  PubMed  Google Scholar 

  32. Balamurugan AN, Naziruddin B, Lockridge A, Tiwari M, Loganathan G, Takita M, et al. Islet product characteristics and factors related to successful human islet transplantation from the Collaborative Islet Transplant Registry (CITR) 1999–2010. Am J Transplant. 2014;14(11):2595–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mita A, Ricordi C, Messinger S, Miki A, Misawa R, Barker S, et al. Antiproinflammatory effects of iodixanol (OptiPrep)-based density gradient purification on human islet preparations. Cell Transplant. 2010;19(12):1537–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Park SG, Kim JH, Oh JH, Lee HN, Park HS, Chung SS, et al. Polymyxin B, scavenger of endotoxin, enhances isolation yield and in vivo function of islets. Transpl Int. 2010;23(3):325–32.

    Article  CAS  PubMed  Google Scholar 

  35. Fernandez L, Lehmann R, Selvaggi G, Kong SS, Bottino R, Li H, et al. Influence of variables on canine islet isolation results. Transplant Proc. 1997;29(4):1950.

    Article  CAS  PubMed  Google Scholar 

  36. Linetsky E, Bottino R, Lehmann R, Alejandro R, Inverardi L, Ricordi C. Improved human islet isolation using a new enzyme blend, liberase. Diabetes. 1997;46(7):1120–3.

    Article  CAS  PubMed  Google Scholar 

  37. Itoh T, Sugimoto K, Shimoda M, Chujo D, Takita M, Iwahashi S, et al. Establishment of a prolonged pancreas preservation model for islet isolation research in mice. Islets. 2011;3(6):376–80.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rahier J, Goebbels RM, Henquin JC. Cellular composition of the human diabetic pancreas. Diabetologia. 1983;24(5):366–71.

    Article  CAS  PubMed  Google Scholar 

  39. Stefan Y, Orci L, Malaisse-Lagae F, Perrelet A, Patel Y, Unger RH. Quantitation of endocrine cell content in the pancreas of nondiabetic and diabetic humans. Diabetes. 1982;31(8 Pt 1):694–700.

    Article  CAS  PubMed  Google Scholar 

  40. Clark A, Wells CA, Buley ID, Cruickshank JK, Vanhegan RI, Matthews DR, et al. Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes Res. 1988;9(4):151–9.

    CAS  PubMed  Google Scholar 

  41. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52(1):102–10.

    Article  CAS  PubMed  Google Scholar 

  42. Brissova M, Fowler M, Nicholson W, Chu A, Hirshberg B, Harlan D, et al. Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem. 2005;53(9):1087–97.

    Article  CAS  PubMed  Google Scholar 

  43. Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci U S A. 2006;103(7):2334–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bonner-Weir S, Orci L. New perspectives on the microvasculature of the islets of Langerhans in the rat. Diabetes. 1982;31(10):883–9.

    Article  CAS  PubMed  Google Scholar 

  45. Stagner JI, Samols E. The vascular order of islet cellular perfusion in the human pancreas. Diabetes. 1992;41(1):93–7.

    Article  CAS  PubMed  Google Scholar 

  46. Brunicardi F, Stagner J, Bonner-Weir S, Wayland H, Kleinman R, Livingston E, et al. Microcirculation of the islets of Langerhans. Long Beach Veterans Administration Regional Medical Education Center Symposium. Diabetes. 1996;45(4):385–92.

    Article  CAS  PubMed  Google Scholar 

  47. Ravier M, Güldenagel M, Charollais A, Gjinovci A, Caille D, Söhl G, et al. Loss of connexin36 channels alters beta-cell coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes. 2005;54(6):1798–807.

    Article  CAS  PubMed  Google Scholar 

  48. Serre-Beinier V, Bosco D, Zulianello L, Charollais A, Caille D, Charpantier E, et al. Cx36 makes channels coupling human pancreatic beta-cells, and correlates with insulin expression. Hum Mol Genet. 2009;18(3):428–39.

    Article  CAS  PubMed  Google Scholar 

  49. Nittala A, Ghosh S, Wang X. Investigating the role of islet cytoarchitecture in its oscillation using a new beta-cell cluster model. PLoS ONE. 2007;2(10), e983.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Kim A, Miller K, Jo J, Kilimnik G, Wojcik P, Hara M. Islet architecture: a comparative study. Islets. 2009;1(2):129–36.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Meltzer SJ, Auer J. The effects of intraspinal injection of magnesium salts upon tetanus. J Exp Med. 1906;8(6):692–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Flexner S. Experimental cerebro-spinal meningitis in monkeys. J Exp Med. 1907;9(2):142–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wieczorek G, Pospischil A, Perentes E. A comparative immunohistochemical study of pancreatic islets in laboratory animals (rats, dogs, minipigs, nonhuman primates). Exp Toxicol Pathol. 1998;50(3):151–72.

    Article  CAS  PubMed  Google Scholar 

  54. Steiner DJ, Kim A, Miller K, Hara M. Pancreatic islet plasticity: interspecies comparison of islet architecture and composition. Islets. 2010;2(3):135–45.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Arrojo e Drigo R, Ali Y, Diez J, Srinivasan DK, Berggren PO, Boehm BO. New insights into the architecture of the islet of Langerhans: a focused cross-species assessment. Diabetologia. 2015;58(10):2218–28.

    Article  PubMed  Google Scholar 

  56. Vadori M, Cozzi E. The immunological barriers to xenotransplantation. Tissue Antigens. 2015;86(4):239–53.

    Article  CAS  PubMed  Google Scholar 

  57. Cooper DK, Bottino R. Recent advances in understanding xenotransplantation: implications for the clinic. Expert Rev Clin Immunol. 2015;11(12):1379–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shin JS, Kim JM, Kim JS, Min BH, Kim YH, Kim HJ, et al. Long-term control of diabetes in immunosuppressed Nonhuman Primates (NHP) by the transplantation of adult porcine islets. Am J Transplant. 2015;15(11):2837–50.

    Article  CAS  PubMed  Google Scholar 

  59. Bottino R, Wijkstrom M, van der Windt DJ, Hara H, Ezzelarab M, Murase N, et al. Pig-to-monkey islet xenotransplantation using multi-transgenic pigs. Am J Transplant. 2014;14(10):2275–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. van der Windt DJ, Bottino R, Casu A, Campanile N, Cooper DK. Rapid loss of intraportally transplanted islets: an overview of pathophysiology and preventive strategies. Xenotransplantation. 2007;14(4):288–97.

    Article  PubMed  Google Scholar 

  61. Byrne GW, McGregor CG, Breimer ME. Recent investigations into pig antigen and anti-pig antibody expression. Int J Surg. 2015;23:223–8.

    Article  PubMed  Google Scholar 

  62. Kang HJ, Lee H, Park EM, Kim JM, Shin JS, Kim JS, et al. Increase in anti-Gal IgM level is associated with early graft failure in intraportal porcine islet xenotransplantation. Ann Lab Med. 2015;35(6):611–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Estrada JL, Martens G, Li P, Adams A, Newell KA, Ford ML, et al. Evaluation of human and nonhumanprimate antibody binding to pig cells lacking GGTA1/CMAH/beta4GalNT2 genes. Xenotransplantation. 2015;22(3):194–202.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ellis CE, Korbutt GS. Justifying clinical trials for porcine islet xenotransplantation. Xenotransplantation. 2015;22(5):336–44.

    Article  PubMed  Google Scholar 

  65. Schuurman HJ. Regulatory aspects of clinical xenotransplantation. Int J Surg. 2015;23:312–21.

    Article  PubMed  Google Scholar 

  66. Jay TR, Heald KA, Carless NJ, Topham DE, Downing R. The distribution of porcine pancreatic beta-cells at ages 5, 12 and 24 weeks. Xenotransplantation. 1999;6(2):131–40.

    Article  CAS  PubMed  Google Scholar 

  67. Stagner JI, Samols E, Koerker DJ, Goodner CJ. Perfusion with anti-insulin gamma globulin indicates a B to A to D cellular perfusion sequence in the pancreas of the rhesus monkey, Macaca mulatta. Pancreas. 1992;7(1):26–9.

    Article  CAS  PubMed  Google Scholar 

  68. Stagner JI, Samols E, Bonner-Weir S. Beta – alpha – delta pancreatic islet cellular perfusion in dogs. Diabetes. 1988;37(12):1715–21.

    Article  CAS  PubMed  Google Scholar 

  69. Nyman LR, Wells KS, Head WS, McCaughey M, Ford E, Brissova M, et al. Real-time, multidimensional in vivo imaging used to investigate blood flow in mouse pancreatic islets. J Clin Invest. 2008;118(11):3790–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jacques-Silva MC, Correa-Medina M, Cabrera O, Rodriguez-Diaz R, Makeeva N, Fachado A, et al. ATP-gated P2X3 receptors constitute a positive autocrine signal for insulin release in the human pancreatic beta cell. Proc Natl Acad Sci U S A. 2010;107(14):6465–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rodriguez-Diaz R, Dando R, Jacques-Silva MC, Fachado A, Molina J, Abdulreda MH, et al. Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans. Nat Med. 2011;17(7):888–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rodriguez-Diaz R, Menegaz D, Caicedo A. Neurotransmitters act as paracrine signals to regulate insulin secretion from the human pancreatic islet. J Physiol. 2014;592(Pt 16):3413–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rodriguez-Diaz R, Dando R, Huang YA, Berggren PO, Roper SD, Caicedo A. Real-time detection of acetylcholine release from the human endocrine pancreas. Nat Protoc. 2012;7(6):1015–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nyman LR, Ford E, Powers AC, Piston DW. Glucose-dependent blood flow dynamics in murine pancreatic islets in vivo. Am J Physiol Endocrinol Metab. 2010;298(4):E807–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dai C, Brissova M, Reinert RB, Nyman L, Liu EH, Thompson C, et al. Pancreatic islet vasculature adapts to insulin resistance through dilation and not angiogenesis. Diabetes. 2013;62(12):4144–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ballian N, Brunicardi FC. Islet vasculature as a regulator of endocrine pancreas function. World J Surg. 2007;31(4):705–14.

    Article  PubMed  Google Scholar 

  77. Rodriguez-Diaz R, Abdulreda MH, Formoso AL, Gans I, Ricordi C, Berggren PO, et al. Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metab. 2011;14(1):45–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dolensek J, Rupnik MS, Stozer A. Structural similarities and differences between the human and the mouse pancreas. Islets. 2015;7(1), e1024405.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nyqvist D, Speier S, Rodriguez-Diaz R, Molano RD, Lipovsek S, Rupnik M, et al. Donor islet endothelial cells in pancreatic islet revascularization. Diabetes. 2011;60(10):2571–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Virtanen I, Banerjee M, Palgi J, Korsgren O, Lukinius A, Thornell LE, et al. Blood vessels of human islets of Langerhans are surrounded by a double basement membrane. Diabetologia. 2008;51(7):1181–91.

    Article  CAS  PubMed  Google Scholar 

  81. Cabrera O, Jacques-Silva MC, Speier S, Yang SN, Köhler M, Fachado A, et al. Glutamate is a positive autocrine signal for glucagon release. Cell Metab. 2008;7(6):545–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Moriyama Y, Hayashi M. Glutamate-mediated signaling in the islets of Langerhans: a thread entangled. Trends Pharmacol Sci. 2003;24(10):511–7.

    Article  CAS  PubMed  Google Scholar 

  83. Bertrand G, Gross R, Puech R, Loubatières-Mariani M, Bockaert J. Glutamate stimulates glucagon secretion via an excitatory amino acid receptor of the AMPA subtype in rat pancreas. Eur J Pharmacol. 1993;237(1):45–50.

    Article  CAS  PubMed  Google Scholar 

  84. Rorsman P, Berggren PO, Bokvist K, Ericson H, Möhler H, Ostenson CG, et al. Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels. Nature. 1989;341(6239):233–6.

    Article  CAS  PubMed  Google Scholar 

  85. Petit P, Hillaire-Buys D, Manteghetti M, Debrus S, Chapal J, Loubatières-Mariani M. Evidence for two different types of P2 receptors stimulating insulin secretion from pancreatic B cell. Br J Pharmacol. 1998;125(6):1368–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Salehi A, Qader S, Quader S, Grapengiesser E, Hellman B. Inhibition of purinoceptors amplifies glucose-stimulated insulin release with removal of its pulsatility. Diabetes. 2005;54(7):2126–31.

    Article  CAS  PubMed  Google Scholar 

  87. Léon C, Freund M, Latchoumanin O, Farret A, Petit P, Cazenave J, et al. The P2Y(1) receptor is involved in the maintenance of glucose homeostasis and in insulin secretion in mice. Purinergic Signal. 2005;1(2):145–51.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Fernandez-Alvarez J, Hillaire-Buys D, Loubatières-Mariani M, Gomis R, Petit P. P2 receptor agonists stimulate insulin release from human pancreatic islets. Pancreas. 2001;22(1):69–71.

    Article  CAS  PubMed  Google Scholar 

  89. Silva A, Rodrigues R, Tomé A, Cunha R, Misler S, Rosário L, et al. Electrophysiological and immunocytochemical evidence for P2X purinergic receptors in pancreatic beta cells. Pancreas. 2008;36(3):279–83.

    Article  CAS  PubMed  Google Scholar 

  90. Hanna S, Pigeau G, Galvanovskis J, Clark A, Rorsman P, MacDonald P. Kiss-and-run exocytosis and fusion pores of secretory vesicles in human beta-cells. Pflugers Arch. 2009;457(6):1343–50.

    Article  CAS  PubMed  Google Scholar 

  91. MacDonald P, Braun M, Galvanovskis J, Rorsman P. Release of small transmitters through kiss-and-run fusion pores in rat pancreatic beta cells. Cell Metab. 2006;4(4):283–90.

    Article  CAS  PubMed  Google Scholar 

  92. Braun M, Ramracheya R, Bengtsson M, Clark A, Walker JN, Johnson PR, et al. Gamma-aminobutyric acid (GABA) is an autocrine excitatory transmitter in human pancreatic beta-cells. Diabetes. 2010;59:1694–701. United States.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bernard C. Leçons de physiologie expérimentale appliquée à la médecine, faites au Collège de France, par m. Claude Bernard. Paris: J.B. Baillière et fils; 1855 [etc., etc.].

    Book  Google Scholar 

  94. Langerhans P, Morrison H. Contributions to the microscopic anatomy of the pancreas. Baltimore: The Johns Hopkins Press; 1937. 1 p.l., 39 p. p.

    Google Scholar 

  95. Woods S, Porte DJ. Neural control of the endocrine pancreas. Physiol Rev. 1974;54(3):596–619.

    CAS  PubMed  Google Scholar 

  96. Satin L, Kinard T. Neurotransmitters and their receptors in the islets of Langerhans of the pancreas: what messages do acetylcholine, glutamate, and GABA transmit? Endocrine. 1998;8(3):213–23.

    Article  CAS  PubMed  Google Scholar 

  97. Ahrén B. Autonomic regulation of islet hormone secretion – implications for health and disease. Diabetologia. 2000;43(4):393–410.

    Article  PubMed  Google Scholar 

  98. Gilon P, Henquin J. Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr Rev. 2001;22(5):565–604.

    CAS  PubMed  Google Scholar 

  99. Brunicardi F, Shavelle D, Andersen D. Neural regulation of the endocrine pancreas. Int J Pancreatol. 1995;18(3):177–95.

    CAS  PubMed  Google Scholar 

  100. Havel P, Taborsky GJ. The contribution of the autonomic nervous system to changes of glucagon and insulin secretion during hypoglycemic stress. Endocr Rev. 1989;10(3):332–50.

    Article  CAS  PubMed  Google Scholar 

  101. D’Alessio D, Kieffer T, Taborsky GJ, Havel P. Activation of the parasympathetic nervous system is necessary for normal meal-induced insulin secretion in rhesus macaques. J Clin Endocrinol Metab. 2001;86(3):1253–9.

    Article  PubMed  Google Scholar 

  102. Ahrén B, Holst J. The cephalic insulin response to meal ingestion in humans is dependent on both cholinergic and noncholinergic mechanisms and is important for postprandial glycemia. Diabetes. 2001;50(5):1030–8.

    Article  PubMed  Google Scholar 

  103. Teff KL, Mattes RD, Engelman K. Cephalic phase insulin release in normal weight males: verification and reliability. Am J Physiol. 1991;261(4 Pt 1):E430–6.

    CAS  PubMed  Google Scholar 

  104. Chenon D, Ribes G, Loubatières-Mariani M. Importance of the cholinergic nervous system in the postprandial secretion of insulin in dogs. C R Seances Soc Biol Fil. 1984;178(3):307–12.

    CAS  PubMed  Google Scholar 

  105. Rodriguez-Diaz R, Caicedo A. Novel approaches to studying the role of innervation in the biology of pancreatic islets. Endocrinol Metab Clin N Am. 2013;42(1):39–56.

    Article  Google Scholar 

  106. Lindskog S, Ahrén B, Dunning B, Sundler F. Galanin-immunoreactive nerves in the mouse and rat pancreas. Cell Tissue Res. 1991;264(2):363–8.

    Article  CAS  PubMed  Google Scholar 

  107. Karlsson S, Sundler F, Ahrén B. Neonatal capsaicin-treatment in mice: effects on pancreatic peptidergic nerves and 2-deoxy-D-glucose-induced insulin and glucagon secretion. J Auton Nerv Syst. 1992;39(1):51–9.

    Article  CAS  PubMed  Google Scholar 

  108. Gautam D, Jeon J, Li J, Han S, Hamdan F, Cui Y, et al. Metabolic roles of the M3 muscarinic acetylcholine receptor studied with M3 receptor mutant mice: a review. J Recept Signal Transduct Res. 2008;28(1–2):93–108.

    Article  CAS  PubMed  Google Scholar 

  109. Ahrén B, Ar’Rajab A, Böttcher G, Sundler F, Dunning B. Presence of galanin in human pancreatic nerves and inhibition of insulin secretion from isolated human islets. Cell Tissue Res. 1991;264(2):263–7.

    Article  PubMed  Google Scholar 

  110. Bishop AE, Polak JM, Green IC, Bryant MG, Bloom SR. The location of VIP in the pancreas of man and rat. Diabetologia. 1980;18(1):73–8.

    Article  CAS  PubMed  Google Scholar 

  111. Amenta F, Cavallotti C, de Rossi M, Tonelli F, Vatrella F. The cholinergic innervation of human pancreatic islets. Acta Histochem. 1983;73(2):273–8.

    Article  CAS  PubMed  Google Scholar 

  112. Ding WG, Kimura H, Fujimura M, Fujimiya M. Neuropeptide Y and peptide YY immunoreactivities in the pancreas of various vertebrates. Peptides. 1997;18(10):1523–9.

    Article  CAS  PubMed  Google Scholar 

  113. Shimosegawa T, Asakura T, Kashimura J, Yoshida K, Meguro T, Koizumi M, et al. Neurons containing gastrin releasing peptide-like immunoreactivity in the human pancreas. Pancreas. 1993;8(4):403–12.

    Article  CAS  PubMed  Google Scholar 

  114. Rodriguez-Diaz R, Speier S, Molano RD, Formoso A, Gans I, Abdulreda MH, et al. Noninvasive in vivo model demonstrating the effects of autonomic innervation on pancreatic islet function. Proc Natl Acad Sci U S A. 2012;109(52):21456–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Midhat H. Abdulreda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abdulreda, M.H., Rodriguez-Diaz, R., Cabrera, O., Caicedo, A., Berggren, PO. (2016). The Different Faces of the Pancreatic Islet. In: Ramírez-Domínguez, M. (eds) Pancreatic Islet Isolation. Advances in Experimental Medicine and Biology, vol 938. Springer, Cham. https://doi.org/10.1007/978-3-319-39824-2_2

Download citation

Publish with us

Policies and ethics