Skip to main content

Bone Formation in Osteoporosis, In Vitro Mechanical Stimulation as Compared with Biochemical Stimuli

  • Chapter
  • First Online:
Bone and Cartilage Regeneration

Part of the book series: Stem Cells in Clinical Applications ((SCCA))

  • 933 Accesses

Abstract

Abnormalities in the number and function of bone-forming osteoblasts play a central role in the pathophysiological processes leading to osteoporosis. Normal osteoblast production and function are regulated by chemical growth factors and mechanical signals. Nevertheless, the responses of mesenchymal stem cells from osteoporotic bone to mechanical signals remain poorly understood. Animal and human studies demonstrate the anabolic properties of mechanical stimulation in its ability to improve bone formation by enhancing the proliferation of mesenchymal stem cells and their subsequent commitment down an osteoblastic lineage. Response to mechanical strains as low as 10 με has been seen, illustrating the sensitivity of mechanosensory cells to mechanotransduction pathways. Mechanical signals represent a key regulatory mechanism in the maintenance and formation of bone. These signals may be more effective than biochemical ones in promoting osteoporotic mesenchymal stem cells to differentiate along an osteoblastic lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarden EM, Burger EH, Nijweide PJ. Function of osteocytes in bone. J Cell Biochem. 1994;55:287–99.

    Article  CAS  PubMed  Google Scholar 

  • Acosta FL, Pham M, Safai Y, Buser Z. Improving bone formation in osteoporosis through in vitro mechanical stimulation compared to biochemical stimuli. J Nat Sci. 2015;1:e63.

    Google Scholar 

  • Ahn AC, Grodzinsky AJ. Relevance of collagen piezoelectricity to “Wolff's Law”: a critical review. Med Eng Phys. 2009;31:733–41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Albagha OM, Ralston SH. Genetic determinants of susceptibility to osteoporosis. Endocrinol Metab Clin North Am. 2003;32:65–81.

    Article  CAS  PubMed  Google Scholar 

  • Aldini NN, Fini M, Giavaresi G, Giardino R, Greggi T, Parisini P. Pedicular fixation in the osteoporotic spine: a pilot in vivo study on long-term ovariectomized sheep. J Orthop Res. 2002;20:1217–24.

    Article  PubMed  Google Scholar 

  • Augat P, Simon U, Liedert A, Claes L. Mechanics and mechano-biology of fracture healing in normal and osteoporotic bone. Osteoporos Int. 2005;16 Suppl 2:S36–43.

    Article  PubMed  Google Scholar 

  • Bacabac RG, Smit TH, Mullender MG, Dijcks SJ, Van Loon JJ, Klein-Nulend J. Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem Biophys Res Commun. 2004;315:823–9.

    Article  CAS  PubMed  Google Scholar 

  • Bacabac RG, Smit TH, Van Loon JJ, Doulabi BZ, Helder M, Klein-Nulend J. Bone cell responses to high-frequency vibration stress: does the nucleus oscillate within the cytoplasm? FASEB J. 2006;20:858–64.

    Article  CAS  PubMed  Google Scholar 

  • Baldessari D, Badaloni A, Longhi R, Zappavigna V, Consalez GG. MAB21L2, a vertebrate member of the Male-abnormal 21 family, modulates BMP signaling and interacts with SMAD1. BMC Cell Biol. 2004;5:48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Benisch P, Schilling T, Klein-Hitpass L, Frey SP, Seefried L, Raaijmakers N, et al. The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors. PLoS One. 2012;7, e45142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt KA, Chang EI, Warren SM, Lin SE, Bastidas N, Ghali S, et al. Uniaxial mechanical strain: an in vitro correlate to distraction osteogenesis. J Surg Res. 2007;143:329–36.

    Article  PubMed  Google Scholar 

  • Canalis E. Update in new anabolic therapies for osteoporosis. J Clin Endocrinol Metab. 2010;95:1496–504.

    Google Scholar 

  • Canalis E, Giustina A, Bilezikian JP. Mechanisms of anabolic therapies for osteoporosis. N Engl J Med. 2007;357:905–16.

    Article  CAS  PubMed  Google Scholar 

  • Carter DR, Caler WE, Spengler DM, Frankel VH. Fatigue behavior of adult cortical bone: the influence of mean strain and strain range. Acta Orthop Scand. 1981;52:481–90.

    Article  CAS  PubMed  Google Scholar 

  • Cavagna R, Tournier C, Aunoble S, Bouler JM, Antonietti P, Ronai M, et al. Lumbar decompression and fusion in elderly osteoporotic patients: a prospective study using less rigid titanium rod fixation. J Spinal Disord Tech. 2008;21:86–91.

    Article  PubMed  Google Scholar 

  • Chin DK, Park JY, Yoon YS, Kuh SU, Jin BH, Kim KS, et al. Prevalence of osteoporosis in patients requiring spine surgery: incidence and significance of osteoporosis in spine disease. Osteoporos Int. 2007;18:1219–24.

    Article  CAS  PubMed  Google Scholar 

  • Coe JD, Warden KE, Herzig MA, McAfee PC. Influence of bone mineral density on the fixation of thoracolumbar implants. A comparative study of transpedicular screws, laminar hooks, and spinous process wires. Spine (Phila Pa 1976). 1990;15:902–7.

    Google Scholar 

  • Damaraju S, Matyas JR, Rancourt DE, Duncan NA. The effect of mechanical stimulation on mineralization in differentiating osteoblasts in collagen-I scaffolds. Tissue Eng Part A. 2014;20:3142–53.

    Google Scholar 

  • David V, Martin A, Lafage-Proust MH, Malaval L, Peyroche S, Jones DB, et al. Mechanical loading down-regulates peroxisome proliferator-activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis. Endocrinology. 2007;148:2553–62.

    Article  CAS  PubMed  Google Scholar 

  • Dezawa M, Ishikawa H, Itokazu Y, Yoshihara T, Hoshino M, Takeda S, et al. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science. 2005;309:314–7.

    Article  CAS  PubMed  Google Scholar 

  • Duncan RL, Turner CH. Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int. 1995;57:344–58.

    Article  CAS  PubMed  Google Scholar 

  • Fiedler J, Roderer G, Gunther KP, Brenner RE. BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells. J Cell Biochem. 2002;87:305–12.

    Article  CAS  PubMed  Google Scholar 

  • Garman R, Rubin C, Judex S. Small oscillatory accelerations, independent of matrix deformations, increase osteoblast activity and enhance bone morphology. PLoS One. 2007;2, e653.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilsanz V, Wren TA, Sanchez M, Dorey F, Judex S, Rubin C. Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res. 2006;21:1464–74.

    Article  PubMed  Google Scholar 

  • Giner M, Rios MA, Montoya MA, Vazquez MA, Naji L, Perez-Cano R. RANKL/OPG in primary cultures of osteoblasts from post-menopausal women. Differences between osteoporotic hip fractures and osteoarthritis. J Steroid Biochem Mol Biol. 2009;113:46–51.

    Article  CAS  PubMed  Google Scholar 

  • Gonnerman KN, Brown LS, Chu TM. Effects of growth factors on cell migration and alkaline phosphatase release. Biomed Sci Instrum. 2006;42:60–5.

    CAS  PubMed  Google Scholar 

  • Graham S, Leonidou A, Lester M, Heliotis M, Mantalaris A, Tsiridis E. Investigating the role of PDGF as a potential drug therapy in bone formation and fracture healing. Expert Opin Investig Drugs. 2009;18:1633–54.

    Article  CAS  PubMed  Google Scholar 

  • Gray B, Hsu JD, Furumasu J. Fractures caused by falling from a wheelchair in patients with neuromuscular disease. Dev Med Child Neurol. 1992;34:589–92.

    Article  CAS  PubMed  Google Scholar 

  • Greenfield 3rd RT, Capen DA, Thomas Jr JC, Nelson R, Nagelberg S, Rimoldi RL, et al. Pedicle screw fixation for arthrodesis of the lumbosacral spine in the elderly. An outcome study. Spine (Phila Pa 1976). 1998;23:1470–5.

    Article  Google Scholar 

  • Grossi A, Lametsch R, Karlsson AH, Lawson MA. Mechanical stimuli on C2C12 myoblasts affect myoblast differentiation, focal adhesion kinase phosphorylation and galectin-1 expression: a proteomic approach. Cell Biol Int. 2011;35:579–86.

    Article  CAS  PubMed  Google Scholar 

  • Halvorson TL, Kelley LA, Thomas KA, Whitecloud 3rd TS, Cook SD. Effects of bone mineral density on pedicle screw fixation. Spine (Phila Pa 1976). 1994;19:2415–20.

    Article  CAS  Google Scholar 

  • Hastings GW, Mahmud FA. Electrical effects in bone. J Biomed Eng. 1988;10:515–21.

    Article  CAS  PubMed  Google Scholar 

  • Johnsson KE, Willner S, Johnsson K. Postoperative instability after decompression for lumbar spinal stenosis. Spine (Phila Pa 1976). 1986;11:107–10.

    Article  CAS  Google Scholar 

  • Kanakaris NK, Petsatodis G, Tagil M, Giannoudis PV. Is there a role for bone morphogenetic proteins in osteoporotic fractures? Injury. 2009;40 Suppl 3:S21–26.

    Article  PubMed  Google Scholar 

  • Kang MN, Yoon HH, Seo YK, Park JK. Effect of mechanical stimulation on the differentiation of cord stem cells. Connect Tissue Res. 2012;53:149–59.

    Article  CAS  PubMed  Google Scholar 

  • Kaspar D, Seidl W, Neidlinger-Wilke C, Ignatius A, Claes L. Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity. J Biomech. 2000;33:45–51.

    Article  CAS  PubMed  Google Scholar 

  • Kassem M, Brixen K, Mosekilde L, Eriksen EF. Human marrow stromal osteoblast-like cells do not show reduced responsiveness to in vitro stimulation with growth hormone in patients with postmenopausal osteoporosis. Calcif Tissue Int. 1994;54:1–6.

    Article  CAS  PubMed  Google Scholar 

  • Khayat G, Rosenzweig DH, Khavandgar Z, Li J, Murshed M, Quinn TM. Low-frequency mechanical stimulation modulates osteogenic differentiation of C2C12 cells. ISRN Stem Cells. 2013. doi:10.1155/2013/138704.

    Google Scholar 

  • Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S. Mechanosensation and transduction in osteocytes. Bone. 2013;54:182–90.

    Article  CAS  PubMed  Google Scholar 

  • Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89:755–64.

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni RN, Voglewede PA, Liu D. Mechanical vibration inhibits osteoclast formation by reducing DC-STAMP receptor expression in osteoclast precursor cells. Bone. 2013;57:493–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurata K, Uemura T, Nemoto A, Tateishi T, Murakami T, Higaki H, et al. Mechanical strain effect on bone-resorbing activity and messenger RNA expressions of marker enzymes in isolated osteoclast culture. J Bone Miner Res. 2001;16:722–30.

    Article  CAS  PubMed  Google Scholar 

  • Li WF, Hou SX, Yu B, Li MM, Ferec C, Chen JM. Genetics of osteoporosis: accelerating pace in gene identification and validation. Hum Genet. 2010;127:249–85.

    Article  CAS  PubMed  Google Scholar 

  • Lohberger B, Kaltenegger H, Stuendl N, Payer M, Rinner B, Leithner A. Effect of cyclic mechanical stimulation on the expression of osteogenesis genes in human intraoral mesenchymal stromal and progenitor cells. Biomed Res Int. 2014;2014:189516.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luu YK, Capilla E, Rosen CJ, Gilsanz V, Pessin JE, Judex S, et al. Mechanical stimulation of mesenchymal stem cell proliferation and differentiation promotes osteogenesis while preventing dietary-induced obesity. J Bone Miner Res. 2009;24:50–61.

    Article  CAS  PubMed  Google Scholar 

  • McLain RF, McKinley TO, Yerby SA, Smith TS, Sarigul-Klijn N. The effect of bone quality on pedicle screw loading in axial instability. A synthetic model. Spine (Phila Pa 1976). 1997;22:1454–60.

    Article  CAS  Google Scholar 

  • Mullender M, El Haj AJ, Yang Y, van Duin MA, Burger EH, Klein-Nulend J. Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue. Med Biol Eng Comput. 2004;42:14–21.

    Article  CAS  PubMed  Google Scholar 

  • Nagaraja MP, Jo H. The role of mechanical stimulation in recovery of bone loss-high versus low magnitude and frequency of force. Life (Basel). 2014;4:117–30.

    Google Scholar 

  • Niger C, Lima F, Yoo DJ, Gupta RR, Buo AM, Hebert C, et al. The transcriptional activity of osterix requires the recruitment of Sp1 to the osteocalcin proximal promoter. Bone. 2011;49:683–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozcivici E, Garman R, Judex S. High-frequency oscillatory motions enhance the simulated mechanical properties of non-weight bearing trabecular bone. J Biomech. 2007;40:3404–11.

    Article  PubMed  Google Scholar 

  • Ozcivici E, Luu YK, Adler B, Qin YX, Rubin J, Judex S, et al. Mechanical signals as anabolic agents in bone. Nat Rev Rheumatol. 2010;6:50–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SB, Chung CK. Strategies of spinal fusion on osteoporotic spine. J Korean Neurosurg Soc. 2011;49:317–22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Park SH, Sim WY, Min BH, Yang SS, Khademhosseini A, Kaplan DL. Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation. PLoS One. 2012;7, e46689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrini S, Laviola L, Carreira MC, Cignarelli A, Natalicchio A, Giorgino F. The GH/IGF1 axis and signaling pathways in the muscle and bone: mechanisms underlying age-related skeletal muscle wasting and osteoporosis. J Endocrinol. 2010;205:201–10.

    Article  CAS  PubMed  Google Scholar 

  • Pountos I, Georgouli T, Henshaw K, Bird H, Jones E, Giannoudis PV. The effect of bone morphogenetic protein-2, bone morphogenetic protein-7, parathyroid hormone, and platelet-derived growth factor on the proliferation and osteogenic differentiation of mesenchymal stem cells derived from osteoporotic bone. J Orthop Trauma. 2010;24:552–6.

    Article  PubMed  Google Scholar 

  • Pre D, Ceccarelli G, Gastaldi G, Asti A, Saino E, Visai L, et al. The differentiation of human adipose-derived stem cells (hASCs) into osteoblasts is promoted by low amplitude, high frequency vibration treatment. Bone. 2011;49:295–303.

    Article  CAS  PubMed  Google Scholar 

  • Rambaut PC, Goode AW. Skeletal changes during space flight. Lancet. 1985;2:1050–2.

    Article  CAS  PubMed  Google Scholar 

  • Rosa N, Simoes R, Magalhaes FD, Marques AT. From mechanical stimulus to bone formation: a review. Med Eng Phys. 2015;37:719–28.

    Article  PubMed  Google Scholar 

  • Rubin CT, Gross TS, McLeod KJ, Bain SD. Morphologic stages in lamellar bone formation stimulated by a potent mechanical stimulus. J Bone Miner Res. 1995;10:488–95.

    Article  CAS  PubMed  Google Scholar 

  • Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K. Anabolism. Low mechanical signals strengthen long bones. Nature. 2001a;412:603–4.

    Article  CAS  PubMed  Google Scholar 

  • Rubin C, Xu G, Judex S. The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli. FASEB J. 2001b;15:2225–9.

    Article  CAS  PubMed  Google Scholar 

  • Rubin C, Turner AS, Muller R, Mittra E, McLeod K, Lin W, et al. Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. J Bone Miner Res. 2002;17:349–57.

    Article  PubMed  Google Scholar 

  • Rubin CT, Capilla E, Luu YK, Busa B, Crawford H, Nolan DJ, et al. Adipogenesis is inhibited by brief, daily exposure to high-frequency, extremely low-magnitude mechanical signals. Proc Natl Acad Sci U S A. 2007;104:17879–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rui YF, Lui PP, Ni M, Chan LS, Lee YW, Chan KM. Mechanical loading increased BMP-2 expression which promoted osteogenic differentiation of tendon-derived stem cells. J Orthop Res. 2011;29:390–6.

    Article  CAS  PubMed  Google Scholar 

  • Salzstein RA, Pollack SR. Electromechanical potentials in cortical bone–II. Experimental analysis. J Biomech. 1987;20:271–80.

    Article  CAS  PubMed  Google Scholar 

  • Salzstein RA, Pollack SR, Mak AF, Petrov N. Electromechanical potentials in cortical bone–I. A continuum approach. J Biomech. 1987;20:261–70.

    Article  CAS  PubMed  Google Scholar 

  • Sarraf CE, Otto WR, Eastwood M. In vitro mesenchymal stem cell differentiation after mechanical stimulation. Cell Prolif. 2011;44:99–108.

    Article  CAS  PubMed  Google Scholar 

  • Seeman E. Bone quality: the material and structural basis of bone strength. J Bone Miner Metab. 2008;26:1–8.

    Article  PubMed  Google Scholar 

  • Sen B, Xie Z, Case N, Styner M, Rubin CT, Rubin J. Mechanical signal influence on mesenchymal stem cell fate is enhanced by incorporation of refractory periods into the loading regimen. J Biomech. 2011;44:593–9.

    Article  PubMed  Google Scholar 

  • Shamos MH, Lavine LS, Shamos MI. Piezoelectric effect in bone. Nature. 1963;197:81.

    Article  CAS  PubMed  Google Scholar 

  • Sherman S. Preventing and treating osteoporosis: strategies at the millennium. Ann N Y Acad Sci. 2001;949:188–97.

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Li H, Zhang X, Fu Y, Huang Y, Lui PP, et al. Continuous cyclic mechanical tension inhibited Runx2 expression in mesenchymal stem cells through RhoA-ERK1/2 pathway. J Cell Physiol. 2011;226:2159–69.

    Article  CAS  PubMed  Google Scholar 

  • Sienkiewicz PJ, Flatley TJ. Postoperative spondylolisthesis. Clin Orthop Relat Res. 1987;(221):172–80.

    Google Scholar 

  • Simkin A, Ayalon J, Leichter I. Increased trabecular bone density due to bone-loading exercises in postmenopausal osteoporotic women. Calcif Tissue Int. 1987;40:59–63.

    Article  CAS  PubMed  Google Scholar 

  • Skinner R, Maybee J, Transfeldt E, Venter R, Chalmers W. Experimental pullout testing and comparison of variables in transpedicular screw fixation. A biomechanical study. Spine (Phila Pa 1976). 1990;15:195–201.

    Article  CAS  Google Scholar 

  • Snider RK, Krumwiede NK, Snider LJ, Jurist JM, Lew RA, Katz JN. Factors affecting lumbar spinal fusion. J Spinal Disord. 1999;12:107–14.

    Article  CAS  PubMed  Google Scholar 

  • Solem RC, Eames BF, Tokita M, Schneider RA. Mesenchymal and mechanical mechanisms of secondary cartilage induction. Dev Biol. 2011;356:28–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stenderup K, Justesen J, Eriksen EF, Rattan SI, Kassem M. Number and proliferative capacity of osteogenic stem cells are maintained during aging and in patients with osteoporosis. J Bone Miner Res. 2001;16:1120–9.

    Article  CAS  PubMed  Google Scholar 

  • Sumanasinghe RD, Bernacki SH, Loboa EG. Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression. Tissue Eng. 2006;12:3459–65.

    Article  CAS  PubMed  Google Scholar 

  • Sutherland MK, Geoghegan JC, Yu C, Turcott E, Skonier JE, Winkler DG, et al. Sclerostin promotes the apoptosis of human osteoblastic cells: a novel regulation of bone formation. Bone. 2004;35:828–35.

    Google Scholar 

  • ten Dijke P, Krause C, de Gorter DJ, Lowik CW, van Bezooijen RL. Osteocyte-derived sclerostin inhibits bone formation: its role in bone morphogenetic protein and Wnt signaling. J Bone Joint Surg Am. 2008;90 Suppl 1:31–5.

    Article  PubMed  Google Scholar 

  • Thompson WR, Rubin CT, Rubin J. Mechanical regulation of signaling pathways in bone. Gene. 2012;503:179–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson WR, Yen SS, Rubin J. Vibration therapy: clinical applications in bone. Curr Opin Endocrinol Diabetes Obes. 2014;21:447–53.

    Article  PubMed  PubMed Central  Google Scholar 

  • Trost Z, Trebse R, Prezelj J, Komadina R, Logar DB, Marc J. A microarray based identification of osteoporosis-related genes in primary culture of human osteoblasts. Bone. 2010;46:72–80.

    Article  CAS  PubMed  Google Scholar 

  • Turgeman G, Pittman DD, Muller R, Kurkalli BG, Zhou S, Pelled G, et al. Engineered human mesenchymal stem cells: a novel platform for skeletal cell mediated gene therapy. J Gene Med. 2001;3:240–51.

    Article  CAS  PubMed  Google Scholar 

  • Varkey M, Kucharski C, Haque T, Sebald W, Uludag H. In vitro osteogenic response of rat bone marrow cells to bFGF and BMP-2 treatments. Clin Orthop Relat Res. 2006;443:113–23.

    Article  PubMed  Google Scholar 

  • Wildemann B, Burkhardt N, Luebberstedt M, Vordemvenne T, Schmidmaier G. Proliferating and differentiating effects of three different growth factors on pluripotent mesenchymal cells and osteoblast like cells. J Orthop Surg Res. 2007;2:27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wittenberg RH, Shea M, Swartz DE, Lee KS, White 3rd AA, Hayes WC. Importance of bone mineral density in instrumented spine fusions. Spine (Phila Pa 1976). 1991;16:647–52.

    Article  CAS  Google Scholar 

  • Yone K, Sakou T, Kawauchi Y, Yamaguchi M, Yanase M. Indication of fusion for lumbar spinal stenosis in elderly patients and its significance. Spine (Phila Pa 1976). 1996;21:242–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin H. Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pham, M.H., Buser, Z., Acosta, F.L. (2016). Bone Formation in Osteoporosis, In Vitro Mechanical Stimulation as Compared with Biochemical Stimuli. In: Pham, P. (eds) Bone and Cartilage Regeneration. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-40144-7_12

Download citation

Publish with us

Policies and ethics