Skip to main content

Long-Term Microvascular Complications: New Ideas for Research

  • Chapter
  • First Online:
Research into Childhood-Onset Diabetes

Abstract

Despite the evidence that both type 1 and type 2 diabetes are presently treated with up-to-date therapeutic protocols, complete normalization of glycemic control for both diseases appears to be still out of reach. The gap existing between the “ideal” cure still to come and the present pharmacological treatment of diabetes is the cause of the development of microvascular diabetic complications such as nephropathy and retinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986

    Article  Google Scholar 

  2. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group (2000) Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med 342:381–389

    Article  PubMed Central  Google Scholar 

  3. The Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group (2015) Effect of intensive diabetes therapy on the progression of diabetic retinopathy in patients with type 1 diabetes: 18 years of follow-up in the DCCT/EDIC. Diabetes 64:631–642

    Article  Google Scholar 

  4. Cheung N, Mitchell P, Wong TY (2010) Diabetic retinopathy. Lancet 376:124–136

    Article  PubMed  Google Scholar 

  5. Martín-Merino E, Fortuny J, Rivero-Ferrer E, García-Rodríguez LA (2014) Incidence of retinal complications in a cohort of newly diagnosed diabetic patients. PLoS One 9(6):e100283

    Article  PubMed  PubMed Central  Google Scholar 

  6. Scott I, Flynn H, Smiddy W (2010) Diabetes and ocular disease: past, present, and future therapies, 2nd edn. American Academy of Ophthalmology Monograph:14. Oxford University Press

    Google Scholar 

  7. Wilkinson CP, Ferris FL, Klein RE, Lee PP, Agardh CD, Davis M, Dills D, Kampik A, Pararajasegaram R, Verdaguer JT, Global Diabetic Retinopathy Project Group (2003) Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 110:1677–1682

    Article  CAS  PubMed  Google Scholar 

  8. Antonetti DA, Klein R, Gardner TW (2012) Diabetic retinopathy. N Engl J Med 366:1227–1239

    Article  CAS  PubMed  Google Scholar 

  9. Campochiaro PA (2013) Ocular neovascularization. J Mol Med (Berl) 91:311–321

    Article  CAS  Google Scholar 

  10. Shah CP, Chen C (2011) Review of therapeutic advances in diabetic retinopathy. Ther Adv Endocrinol Metab 2:39–53

    PubMed  PubMed Central  Google Scholar 

  11. Diabetic Retinopathy Clinical Research Network, Brucker AJ, Qin H, Antoszyk AN, Beck RW, Bressler NM, Browning DJ, Elman MJ, Glassman AR, Gross JG, Kollman C, Wells JA 3rd (2009) Observational study of the development of diabetic macular edema following panretinal (scatter) photocoagulation given in 1 or 4 sittings. Arch Ophthalmol 127:132–140

    Article  PubMed Central  Google Scholar 

  12. Tremolada G, Del Turco C, Lattanzio R, Maestroni S, Maestroni A, Bandello F, Zerbini G (2012) The role of angiogenesis in the development of proliferative diabetic retinopathy: impact of intravitreal anti-VEGF treatment. Exp Diabetes Res 2012:728325

    Article  PubMed  PubMed Central  Google Scholar 

  13. Arden GB, Sivaprasad S (2012) The pathogenesis of early retinal changes of diabetic retinopathy. Doc Ophthalmol 124:15–26

    Article  CAS  PubMed  Google Scholar 

  14. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  CAS  PubMed  Google Scholar 

  15. Prater DN, Case J, Ingram DA, Yoder MC (2007) Working hypothesis to redefine endothelial progenitor cells. Leukemia 21:1141–1149

    Article  CAS  PubMed  Google Scholar 

  16. Zerbini G, Lorenzi M, Palini A (2008) Tumor angiogenesis. N Engl J Med 359:763

    Article  CAS  PubMed  Google Scholar 

  17. Medina RJ, O’Neill CL, Sweeney M, Guduric-Fuchs J, Gardiner TA, Simpson DA (2010) Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities. BMC Med Genomics 3:18

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lois N, McCarter RV, O’Neill C, Medina RJ, Stitt AW (2014) Endothelial progenitor cells in diabetic retinopathy. Front Endocrinol (Lausanne) 5:44

    Google Scholar 

  19. Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Böhm M, Nickenig G (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353:999–1007

    Article  CAS  PubMed  Google Scholar 

  20. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600

    Article  PubMed  Google Scholar 

  21. Tan K, Lessieur E, Cutler A, Nerone P, Vasanji A, Asosingh K, Erzurum S, Anand-Apte B (2010) Impaired function of circulating CD34(+) CD45(−) cells in patients with proliferative diabetic retinopathy. Exp Eye Res 91:229–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grant MB, May WS, Caballero S, Brown GA, Guthrie SM, Mames RN, Byrne BJ, Vaught T, Spoerri PE, Peck AB, Scott EW (2002) Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med 8:607–612

    Article  CAS  PubMed  Google Scholar 

  23. Zerbini G, Maestroni A, Palini A, Tremolada G, Lattanzio R, Maestroni S, Pastore MR, Secchi A, Bonfanti R, Gerhardinger C, Lorenzi M (2012) Endothelial progenitor cells carrying monocyte markers are selectively abnormal in type 1 diabetic patients with early retinopathy. Diabetes 61:908–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Borch-Johnsen K, Andersen PK, Deckert T (1985) The effect of proteinuria on relative mortality in type I (insulin-dependent) diabetes mellitus. Diabetologia 28:290–296

    Article  Google Scholar 

  25. Andersen AR, Christiansen JS, Andersen JK, Kreiner S, Deckert T (1983) Diabetic nephropathy in type I (insulin-dependent) diabetes: an epidemiological study. Diabetologia 25:496–501

    Article  CAS  PubMed  Google Scholar 

  26. Gregg EW, Li Y, Wang J, Burrows NR, Ali MK, Rolka D, Williams DE, Geiss L (2014) Changes in diabetes-related complications in the United States, Oxford University Press, New York, New York, USA 1990–2010. N Engl J Med 370:1514–1523

    Google Scholar 

  27. Seaqvist ER, Goetz FC, Rich S, Barbosa J (1989) Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med 320:1161–1165

    Article  Google Scholar 

  28. Viberti GC, Keen H, Wiseman MJ (1987) Raised arterial pressure in parents of proteinuric insulin dependent diabetics. Br Med J 295:515–517

    Article  CAS  Google Scholar 

  29. Rudberg S, Stattin EL, Dahlquist G (1998) Familial and perinatal risk factors for micro- and macroalbuminuria in young IDDM patients. Diabetes 47:1121–1126

    Article  CAS  PubMed  Google Scholar 

  30. Krolewski AS, Canessa M, Warram JH, Laffel LMB, Christlieb AR, Knowler WC, Rand LI (1988) Predisposition to hypertension and susceptibility to renal disease in insulin-dependent diabetes mellitus. N Engl J Med 318:140–145

    Article  CAS  PubMed  Google Scholar 

  31. Mangili R, Bending JJ, Scott G, Li LK, Gupta A, Viberti GC (1988) Increased sodium-lithium countertransport activity in red cells of patients with insulin-dependent diabetes and nephropathy. N Engl J Med 318:146–150

    Article  CAS  PubMed  Google Scholar 

  32. Canessa M, Adragna N, Solomon HS, Connolly TM, Tosteson DC (1980) Increased sodium-lithium countertransport in red cells of patients with essential hypertension. N Engl J Med 302:772–776

    Article  CAS  PubMed  Google Scholar 

  33. Zerbini G, Ceolotto G, Gaboury C, Mos L, Pessina AC, Canessa M, Semplicini A (1995) Sodium-lithium countertransport has low affinity for sodium in hyperinsulinemic hypertensive subjects. Hypertension 25:986–993

    Article  CAS  PubMed  Google Scholar 

  34. Williams RR, Hunt SC, Kuida H, Smith JB, Ash KO (1983) Sodium-lithium countertransport in erythrocytes of hypertension prone families in Utah. Am J Epidemiol 118:338–344

    CAS  PubMed  Google Scholar 

  35. Hasstedt SJ, Wu LL, Ash KO, Kuida H, Williams RR (1988) Hypertension and sodium-lithium countertransport in Utah pedigrees: evidence for major locus inheritance. Am J Hum Genet 43:14–22

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hunt SC, Stephenson SH, Hopkins PN, Hasstedt SJ, Williams RR (1991) A prospective study of sodium-lithium countertransport and hypertension in Utah. Hypertension 17:1–7

    Article  CAS  PubMed  Google Scholar 

  37. Laurenzi M, Cirillo M, Panarelli W, Trevisan M, Stamler R, Dyer AR, Stamler J (1997) Baseline sodium-lithium countertransport and 6-year incidence of hypertension. The Gubbio population study. Circulation 95:581–587

    Article  CAS  PubMed  Google Scholar 

  38. Monciotti CG, Semplicini A, Morocutti A, Maioli M, Cipollina MR, Barzon I, Palaro C, Brocco E, Trevisan M, Fioretto P, Crepaldi G, Nosadini R (1997) Elevated sodium-lithium countertransport activity in erythrocytes is predictive of the development of microalbuminuria in IDDM. Diabetologia 40:654–661

    Article  CAS  PubMed  Google Scholar 

  39. Zerbini G, Maestroni A, Breviario D, Mangili R, Casari G (2003) Alternative splicing of NHE-1 mediates Na-Li countertransport and associates with activity rate. Diabetes 52:1511–1518

    Article  CAS  PubMed  Google Scholar 

  40. Fioretto P, Steffes MW, Brown DM, Mauer SM (1992) An overview of renal pathology in insulin-dependent diabetes mellitus in relationship to altered glomerular hemodynamics. Am J Kidney Dis 20:549–558

    Article  CAS  PubMed  Google Scholar 

  41. Fioretto P, Steffes MW, Sutherland DE, Goetz FC, Mauer M (1998) Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med 339:69–75

    Article  CAS  PubMed  Google Scholar 

  42. Luzi L (1998) Pancreas transplantation and diabetic complications. N Engl J Med 339:115–117

    Article  CAS  PubMed  Google Scholar 

  43. The Diabetes Control and Complications (DCCT) Research Group (1995) Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial. Kidney Int 47:1703–1720

    Article  Google Scholar 

  44. Steiner DF, Cunningham D, Spigelman L, Aten B (1967) Insulin biosynthesis: evidence for a precursor. Science 157:697–700

    Article  CAS  PubMed  Google Scholar 

  45. Rubenstein AH, Cho S, Steiner DF (1968) Evidence for proinsulin in human urine and serum. Lancet 1:1353–1355

    Article  CAS  PubMed  Google Scholar 

  46. Wahren J, Ekberg K, Johansson J, Henriksson M, Pramanik A, Johansson BL, Rigler R, Jörnvall H (2000) Role of C-peptide in human physiology. Am J Physiol Endocrinol Metab 278:E759–E768

    CAS  PubMed  Google Scholar 

  47. Rigler R, Pramanik A, Jonasson P, Kratz G, Jansson OT, Nygren P, Stâhl S, Ekberg K, Johansson B, Uhlén S, Uhlén M, Jörnvall H, Wahren J (1999) Specific binding of proinsulin C-peptide to human cell membranes. Proc Natl Acad Sci U S A 96:13318–13323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ido Y, Vindigni A, Chang K, Stramm L, Chance R, Heath WF, DiMarchi RD, Di Cera E, Williamson JR (1997) Prevention of vascular and neural dysfunction in diabetic rats by C-peptide. Science 277:563–566

    Article  CAS  PubMed  Google Scholar 

  49. Sjöquist M, Huang W, Johansson BL (1998) Effects of C-peptide on renal function at the early stage of experimental diabetes. Kidney Int 54:758–764

    Article  PubMed  Google Scholar 

  50. Johansson BL, Borg K, Fernqvist-Forbes E, Kernell A, Odergren T, Wahren J (2000) Beneficial effects of C-peptide on incipient nephropathy and neuropathy in patients with Type 1 diabetes mellitus. Diabet Med 17:181–189

    Article  CAS  PubMed  Google Scholar 

  51. Zerbini G, Mangili R, Luzi L (1999) Higher post-absorptive C-peptide levels in Type 1 diabetic patients without renal complications. Diabet Med 16:1048

    Article  CAS  PubMed  Google Scholar 

  52. Forst T, De La Tour DD, Kunt T, Pfützner A, Goitom K, Pohlmann T, Schneider S, Johansson BL, Wahren J, Löbig M, Engelbach M, Beyer J, Vague P (2000) Effects of proinsulin C-peptide on nitric oxide, microvascular blood flow and erythrocyte Na+, K + −ATPase activity in diabetes mellitus type I. Clin Sci (Lond) 98:283–290

    Article  CAS  Google Scholar 

  53. Lachin JM, McGee P, Palmer JP, DCCT/EDIC Research Group (2014) Impact of C-peptide preservation on metabolic and clinical outcomes in the Diabetes Control and Complications Trial. Diabetes 63:739–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Toyoda M, Najafian B, Kim Y, Caramori ML, Mauer M (2007) Podocyte detachment and reduced glomerular capillary endothelial fenestration in human type 1 diabetic nephropathy. Diabetes 56:2155–2160

    Article  CAS  PubMed  Google Scholar 

  55. Weil EJ, Lemley KV, Mason CC, Yee B, Jones LI, Blouch K, Lovato T, Richardson M, Myers BD, Nelson RG (2012) Podocyte detachment and reduced glomerular capillary endothelial fenestration promote kidney disease in type 2 diabetic nephropathy. Kidney Int 82:1010–1017

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pavenstädt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83:253–307

    Article  PubMed  Google Scholar 

  57. Zheng M, Lv LL, Ni J, Ni HF, Li Q, Ma KL, Liu BC (2011) Urinary podocyte-associated mRNA profile in various stages of diabetic nephropathy. PLoS One 6:e20431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yu D, Petermann A, Kunter U, Rong S, Shankland SJ, Floege J (2005) Urinary podocyte loss is a more specific marker of ongoing glomerular damage than proteinuria. J Am Soc Nephrol 16:1733–1741

    Article  CAS  PubMed  Google Scholar 

  59. Vogelmann SU, Nelson WJ, Myers BD, Lemley KV (2003) Urinary excretion of viable podocytes in health and renal disease. Am J Physiol Renal Physiol 285:F40–F48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mundel P (2003) Urinary podocytes: lost and found alive. Kidney Int 64:1529–1530

    Article  PubMed  Google Scholar 

  61. Sakairi T, Abe Y, Kajiyama H, Bartlett LD, Howard LV, Jat PS, Kopp JB (2010) Conditionally immortalized human podocyte cell lines established from urine. Am J Physiol Renal Physiol 298:F557–F567

    Article  CAS  PubMed  Google Scholar 

  62. Jopling C, Boue S, Izpisua Belmonte JC (2011) Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol 12:79–89

    Article  CAS  PubMed  Google Scholar 

  63. Kriz W, Shirato I, Nagata M, LeHir M, Lemley KV (2013) The podocyte’s response to stress: the enigma of foot process effacement. Am J Physiol Renal Physiol 304:F333–F347

    Article  CAS  PubMed  Google Scholar 

  64. Maestroni S, Maestroni A, Dell’Antonio G, Gabellini D, Terzi S, Spinello A, Meregalli G, Castoldi G, Zerbini G (2014) Viable podocyturia in healthy individuals: implications for podocytopathies. Am J Kidney Dis 64:1003–1005

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianpaolo Zerbini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zerbini, G., Maestroni, S. (2017). Long-Term Microvascular Complications: New Ideas for Research. In: Scaramuzza, A., de Beaufort, C., Hanas, R. (eds) Research into Childhood-Onset Diabetes. Springer, Cham. https://doi.org/10.1007/978-3-319-40242-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40242-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40240-6

  • Online ISBN: 978-3-319-40242-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics