Skip to main content

A Virtual Viscoelastic Based Aggregation Model for Self-organization of Swarm Robots System

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9716))

Included in the following conference series:

Abstract

We report a bio-inspired control model to dynamically self-organize a swarm robots system into unplanned patterns emerged through an aggregation method based upon using virtual viscoelastic links among the K-nearby robots. By varying this neighbourhood relationship, virtual viscoelastic links are dynamically created and destroyed between the robots and their sensed neighbours. Based on the equilibrium between these virtual links, the model can distribute the robots at equal angular configurations of the emergent shape being formed. A forward dependent angular motion control is designed to control at which speeds the robots are moving. The model is implemented and tested using the ARGoS simulator where many emerged self-organized configurations are formed showing the effectiveness of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.swarmanoid.org/.

  2. 2.

    http://www.argos-sim.info.

References

  1. Bezzo, N., Fierro, R.: Decentralized connectivity and user localization via wireless robotic networks. In: 2011 IEEE GLOBECOM Workshops (GC Wkshps), pp. 1285–1290. IEEE (2011)

    Google Scholar 

  2. Bezzo, N., Fierro, R.: Swarming of mobile router networks. In: American Control Conference (ACC), pp. 4685–4690. IEEE (2011)

    Google Scholar 

  3. Bonani, M., Longchamp, V., Magnenat, S., Rétornaz, P., Burnier, D., Roulet, G., Vaussard, F., Bleuler, H., Mondada, F.: The marxbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4187–4193. IEEE (2010)

    Google Scholar 

  4. Castañeda, M.A.P., Savage, J., Hernández, A., Cosío, F.A.: Local autonomous robot navigation using potential fields. In: Motion Planning. InTech (2008)

    Google Scholar 

  5. Chen, Q., Veres, S.M., Wang, Y., Meng, Y.: Virtual spring-damper mesh-based formation control for spacecraft swarms in potential fields. J. Guid. Control Dyn. 38(3), 539–546 (2015)

    Article  Google Scholar 

  6. Dewi, T., Risma, P., Oktarina, Y.: Wedge formation control of swarm robots. In: 14th Industrial Electronics Seminar IES (2012), Electronic Engineering Polytechnic Institute of Surabaya (EEPIS), Indonesia, pp. 294–298, 24 October 2012

    Google Scholar 

  7. Ferrante, E., Turgut, A.E., Huepe, C., Stranieri, A., Pinciroli, C., Dorigo, M.: Self-organized flocking with a mobile robot swarm: a novel motion control method. Adapt. Behav., 1059712312462248 (2012)

    Google Scholar 

  8. Gazi, V., Fidan, B., Hanay, Y.S., Koksal, L.: Aggregation, foraging, and formation control of swarms with non-holonomic agents using potential functions and sliding mode techniques. Turkish J. Electr. Eng. Comput. Sci. 15(2), 149–168 (2007)

    Google Scholar 

  9. Hashimoto, H., Aso, S., Yokota, S., Sasaki, A., Ohya, Y., Kobayashi, H.: Stability of swarm robot based on local forces of local swarms. In: SICE Annual Conference, pp. 1254–1257. IEEE (2008)

    Google Scholar 

  10. Hettiarachchi, S., Spears, W.M.: Moving swarm formations through obstacle fields. In: IC-AI, pp. 97–103 (2005)

    Google Scholar 

  11. Hettiarachchi, S., Spears, W.M., Hettiarachchi, S., Spears, W.M.: Distributed adaptive swarm for obstacle avoidance. Int. J. Intell. Comput. Cybern. 2(4), 644–671 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Howard, A., Matarić, M.J., Sukhatme, G.S.: Mobile sensor network deployment using potential fields: a distributed, scalable solution to the area coverage problem. In: Distributed Autonomous Robotic Systems 5, pp. 299–308. Springer, Heidelberg (2002)

    Google Scholar 

  13. Jeong, D., Lee, K.: Dispersion and line formation in artificial swarm intelligence. arXiv preprint arXiv:1407.0014 (2014)

  14. Moeslinger, C., Schmickl, T., Crailsheim, K.: A minimalist flocking algorithm for swarm robots. In: Kampis, G., Karsai, I., Szathmáry, E. (eds.) ECAL 2009, Part II. LNCS, vol. 5778, pp. 375–382. Springer, Heidelberg (2011)

    Google Scholar 

  15. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., et al.: Argos: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6(4), 271–295 (2012)

    Article  Google Scholar 

  16. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In: ACM SIGGRAPH Computer Graphics, vol. 21, pp. 25–34. ACM (1987)

    Google Scholar 

  17. Shucker, B., Bennett, J.K.: Virtual spring mesh algorithms for control of distributed robotic macrosensors. University of Colorado at Boulder, Technical Report CU-CS-996-05 (2005)

    Google Scholar 

  18. Spears, W.M., Spears, D.F., Hamann, J.C., Heil, R.: Distributed, physics-based control of swarms of vehicles. Auton. Rob. 17(2–3), 137–162 (2004)

    Article  Google Scholar 

  19. Spears, W.M., Spears, D.F., Heil, R., Kerr, W., Hettiarachchi, S.: An overview of physicomimetics. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 84–97. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  20. Stranieri, A., Ferrante, E., Turgut, A.E., Trianni, V., Pinciroli, C., Birattari, M., Dorigo, M.: Self-organized flocking with a heterogeneous mobile robot swarm. In: Advances in Artificial Life, ECAL pp. 789–796 (2011)

    Google Scholar 

  21. Turgut, A.E., Çelikkanat, H., Gökçe, F., Şahin, E.: Self-organized flocking in mobile robot swarms. Swarm Intell. 2(2–4), 97–120 (2008)

    Article  Google Scholar 

  22. Urcola, P., Riazuelo, L., Lazaro, M., Montano, L.: Cooperative navigation using environment compliant robot formations. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 2789–2794. IEEE (2008)

    Google Scholar 

  23. Xue, Z., Zeng, J., Feng, C., Liu, Z.: Flocking motion, obstacle avoidance and formation control of range limit perceived groups based on swarm intelligence strategy. J. Softw. 6(8), 1594–1602 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belkacem Khaldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Khaldi, B., Cherif, F. (2016). A Virtual Viscoelastic Based Aggregation Model for Self-organization of Swarm Robots System. In: Alboul, L., Damian, D., Aitken, J. (eds) Towards Autonomous Robotic Systems. TAROS 2016. Lecture Notes in Computer Science(), vol 9716. Springer, Cham. https://doi.org/10.1007/978-3-319-40379-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40379-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40378-6

  • Online ISBN: 978-3-319-40379-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics