Skip to main content

Multi-Resolution Visualisation of Geographic Network Traffic

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9768))

Abstract

Flow visualization techniques are vastly used to visualize scientific data among many fields including meteorology, computational fluid dynamics, medical visualization and aerodynamics. In this paper, we employ flow visualization techniques in conjunction with conventional network visualization methods to represent geographic network traffic data. The proposed visualization system integrates two visualization techniques, flow visualization and node-link diagram. While flow visualization emphasizes on general trends, node-link diagram visualization concentrates on the detailed analysis of the data. A usability study with multiple experiments is performed to evaluate the success of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Becker, R.A., Eick, S.G., Wilks, A.R.: Visualizing network data. IEEE Trans. Visual Comput. Graphics 1(1), 16–28 (1995)

    Article  Google Scholar 

  2. Breitkreutz, B.J., Stark, C., Tyers, M., et al.: Osprey: a network visualization system. Genome Biol. 4(3), R22 (2003)

    Article  Google Scholar 

  3. Cabral, B., Leedom, L.C.: Imaging vector fields using line integral convolution. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, pp. 263–270. ACM (1993)

    Google Scholar 

  4. Dykes, J., MacEachren, A.M., Kraak, M.J.: Exploring Geovisualization. Elsevier, Amsterdam (2005)

    Google Scholar 

  5. Engin, B., Bozkaya, B., Balcisoy, S.: Introducing level of detail to 3d thematic maps. In: ICA GeoViz (2009)

    Google Scholar 

  6. Fayyad, U.M., Wierse, A., Grinstein, G.G.: Information Visualization in Data Mining and Knowledge Discovery. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  7. Hoppe, H.: Smooth view-dependent level-of-detail control and its application to terrain rendering. In: Visualization 1998, Proceedings, pp. 35–42. IEEE (1998)

    Google Scholar 

  8. Huffaker, B., Nemeth, E., Claffy, K.: Otter: A general-purpose network visualization tool. In: Proceedings of the 9th Annual Conference of the Internet Society (1999)

    Google Scholar 

  9. Laramee, R.S., Hauser, H., Doleisch, H., Vrolijk, B., Post, F.H., Weiskopf, D.: The state of the art in flow visualization: Dense and texture-based techniques. In: Computer Graphics Forum, vol. 23, pp. 203–221. Wiley Online Library (2004)

    Google Scholar 

  10. Luebke, D.P.: Level of Detail for 3D Graphics. Morgan Kaufmann, Boston (2003)

    Google Scholar 

  11. Scheuermann, G., Burbach, H., Hagen, H.: Visualizing planar vector fields with normal component using line integral convolution. In: Proceedings of the Conference on Visualization 1999: Celebrating Ten Years, pp. 255–261. IEEE Computer Society Press (1999)

    Google Scholar 

  12. Shen, H.W., Kao, D.L.: A new line integral convolution algorithm for visualizing time-varying flow fields. IEEE Trans. Visual Comput. Graphics 4(2), 98–108 (1998)

    Article  Google Scholar 

  13. Shneiderman, B., Aris, A.: Network visualization by semantic substrates. IEEE Trans. Visual Comput. Graphics 12(5), 733–740 (2006)

    Article  Google Scholar 

  14. Stalling, D., Hege, H.C.: Fast and resolution independent line integral convolution. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 249–256. ACM (1995)

    Google Scholar 

  15. Van Wijk, J.J.: Spot noise texture synthesis for data visualization. In: ACM Siggraph Computer Graphics, vol. 25, pp. 309–318. ACM (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selim Balcisoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kaya, B., Balcisoy, S. (2016). Multi-Resolution Visualisation of Geographic Network Traffic. In: De Paolis, L., Mongelli, A. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2016. Lecture Notes in Computer Science(), vol 9768. Springer, Cham. https://doi.org/10.1007/978-3-319-40621-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40621-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40620-6

  • Online ISBN: 978-3-319-40621-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics