Skip to main content

Characterization of Thermal Transfers and Chemical Kinetics

  • Chapter
  • First Online:
A Thermochemical Heat Storage System for Households

Part of the book series: Springer Theses ((Springer Theses))

  • 1072 Accesses

Abstract

Transport phenomena in porous media have been the focus of many engineering and academic research investigations. Most of the applied studies dealed with low porosity media such as granular materials and packed beds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alrtimi, A., Rouainia, M., Manning, D.A.C.: An improved steady-state apparatus for measuring thermal conductivity of soils. Int. J. Heat Mass Transf. 72, 630–636 (2014). doi:10.1016/j.ijheatmasstransfer.2014.01.034

    Article  Google Scholar 

  • Archie, G.E.: The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME (Am. Inst. Min. Metall. Eng.) 146, 54–62 (1942). doi:10.2118/942054-G

    Google Scholar 

  • Barin, I., Knacke, D.O., Kubaschewski, O.: Thermochemical properties of inorganic substances. Thermochemical Properties of Inorganic Substances, pp. 1–861. Inorganic Chemistry. Springer, Berlin Heidelberg, Berlin, Germany (1977)

    Chapter  Google Scholar 

  • Camirand, C.P.: Etude de la chaleur spécifique et la conductivité thermique des hydrures métalliques par calorimétrie différentielle (Master Thesis). Université du Quebec à Trois-Rivières, Trois-Rivières, Cananda (2000)

    Google Scholar 

  • Camirand, C.P.: Measurement of thermal conductivity by differential scanning calorimetry. Thermochim. Acta 417, 1–4 (2004). doi:10.1016/j.tca.2003.12.023

    Article  Google Scholar 

  • Carman, P.C.: Flow of gases through porous media. Academic Press, New-York, USA (1956)

    MATH  Google Scholar 

  • Chase, M.W., Davies, C.A., Downey, J.R., Frurip, D.J., McDonald, R.A., Seyverud, A.N.: NIST–JANAF thermochemical tables, fourth edition. J. Phys. Chem. Ref. Data Monogr. 9(25), 1–1951 (1998). doi:10.1063/1.555993

    Google Scholar 

  • Colby College, C.: Differential scanning calorimetry; first and second ordertransitions in polymers (2007). (Course No. http://www.colby.edu/chemistry/PChem/lab/DiffScanningCal.pdf). USA

  • Degiovanni, A.: Conductivité et diffusivité thermique des solides. Techniques de l’ingénieur, Traité-Mesures et Contrôle R2850, 17 (2012)

    Google Scholar 

  • Druske, M.-M., Fopah Lele, A., Korhammer, K., Rammelberg, H.U., Wegscheider, N., Ruck, W., Schmidt, T.: Developed materials for thermal energy storage: synthesis and characterization. Energy Procedia Int. Conf. Appl. Energy ICAE2014 61, 96–99 (2014). doi:10.1016/j.egypro.2014.11.915

    Google Scholar 

  • El-Dessouky, H., Al-Juwayhel, F.: Effectiveness of a thermal energy storage system using phase-change materials. Energy Convers. Manag. 38, 601–617 (1997). doi:10.1016/S0196-8904(96)00072-6

    Article  Google Scholar 

  • Ergun, S., Orning, A.A.: Fluid flow through randomly packed columns and fluidized beds. Ind. Eng. Chem. 41, 1179–1184 (1949). doi:10.1021/ie50474a011

    Article  Google Scholar 

  • Flynn, J.H., Levin, D.M.: A method for the determination of thermal conductivity of sheet materials by differential scanning calorimetry (DSC). Thermochim. Acta 126, 93–100 (1988). doi:10.1016/0040-6031(88)87254-X

    Article  Google Scholar 

  • Fopah Lele, A., Korhammer, K., Wegscheider, N., Rammelberg, H.U., Schmidt, T., Ruck, W.K.L.: Thermal conductivity of salt hydrates as porous material using calorimetric (DSC) method. In: 8th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, R&D Document Type: BXXS. Presented at the ExHFT-8, A. Faria—Edicao Electronica Lda. p. 5, Instituto Superior Técnico, Lisbon, Portugal (2013)

    Google Scholar 

  • Freni, A., Tokarev, M.M., Restuccia, G., Okunev, A.G., Aristov, Y.I.: Thermal conductivity of selective water sorbents under the working conditions of a sorption chiller. Appl. Therm. Eng. 22, 1631–1642 (2002). doi:10.1016/S1359-4311(02)00076-5

    Article  Google Scholar 

  • Gascoin, N., Fau, G., Gillard, P.: Determination of Darcian permeability of porous material by infrared spectrometry. J. Porous Mater. 19, 317–331 (2012). doi:10.1007/s10934-011-9478-5

    Article  Google Scholar 

  • Genceli, F.E., Rodriguez Pascual, M., Kjelstrup, S., Witkamp, G.-J.: Coupled heat and mass transfer during crystallization of mgso4·7h2o on a cooled surface. Cryst. Growth Des. 9, 1318–1326 (2009). doi:10.1021/cg800377x

    Article  Google Scholar 

  • Gomez, J.C., Glatzmaier, G.C., Mehos, M.: Heat capacity uncertainty calculation for the eutectic mixture of biphenyl/diphenyl ether used as heat transfer fluid, in: SolarPACES, Contract No. DE-AC36-08GO28308. Presented at the SolarPACES, p. 9, NREL (National Renewable Energy Laboratory), Marrakech, Morocco (2012)

    Google Scholar 

  • Guanghua, N.: Measurement of the thermal conductivities of Na2SO4·10H2O and Na_2CO_3·10H_2O. Inorganic Chemicals Industry, Chinese (2004). 6

    Google Scholar 

  • Guanghua, N., Zhi-ying, Z.: Measurement of thermal conductivities of salt hydrates II. FeCl3·6H2O, FeSO4·7H2O. J. Hubei Inst. Nationalities 8, (2002)

    Google Scholar 

  • Gurgel, J.M., Filho, L.S.A., Grenier, P., Meunier, F.: Thermal diffusivity and adsorption kinetics of silica-gel/water. Adsorption 7, 211–219 (2001). doi:10.1023/A:1012732817374

    Article  Google Scholar 

  • Gurgel, J.M., Grenier, P.: Mesure de la conductivite thermique du charbon actif ac-35 en presence de gaz. Chem. Eng. J. 44, 43–50 (1990). doi:10.1016/0300-9467(90)80052-E

    Article  Google Scholar 

  • Gurgel, J.M., Klüppel, R.P.: Thermal conductivity of hydrated silica-gel. Chem. Eng. J. Biochem. Eng. J. 61, 133–138 (1996). doi:10.1016/0923-0467(96)80020-0

    Article  Google Scholar 

  • Hakvoort, G., van Reijen, L.L., Aartsen, A.J.: Measurement of the thermal conductivity of solid substances by DSC. Thermochim. Acta 93, 317–320 (1985). doi:10.1016/0040-6031(85)85081-4

    Article  Google Scholar 

  • Iverson, B.D., Cordaro, J.G., Kruizenga, A.M.: Thermal property testing of nitrate thermal storage salts in the solid-phase. In: ASME 54686-5th International Conference on Energy Sustainability, Parts A, B, and C, pp. 495–502 (2011). doi:10.1115/ES2011-54159

  • Jiang, L., Wang, L.W., Jin, Z.Q., Tian, B., Wang, R.Z.: Permeability and thermal conductivity of compact adsorbent of salts for sorption refrigeration. J. Heat Transfer 134, 104503–104503 (2012). doi:10.1115/1.4006751

    Article  Google Scholar 

  • Jiang, L., Wang, L.W., Wang, R.Z.: Investigation on thermal conductive consolidated composite CaCl2 for adsorption refrigeration. Int. J. Therm. Sci. 81, 68–75 (2014). doi:10.1016/j.ijthermalsci.2014.03.003

    Article  Google Scholar 

  • Kaviany, M.: Principles of Heat Transfer in Porous Media. Mechanical Engineering Series, 2nd edn. Springer, New York (1999)

    Google Scholar 

  • Kiplagat, J.K., Wang, R.Z., Li, T.X., Oliveira, R.G.: Enhancement of heat and mass transfer in solid-gas sorption systems. Int. J. Air-Conditioning Refrig. 20, 1130001(1–16) (2012). doi:10.1142/S2010132511300011

    Google Scholar 

  • Kristiansen, J.: The guide to expression of uncertainty in measurement approach for estimating uncertainty an appraisal. Clin. Chem. 49, 1822–1829 (2003). doi:10.1373/clinchem.2003.021469

    Article  Google Scholar 

  • Kuhmichel Abrasiv GmbH: Glass beads physic-chemical properties, Glass Beads—GP. (2014). http://www.kuhmichel.com/116-1-Glass-Beads.html. Accessed 10 Sept. 2014

  • Lahmidi, H., Mauran, S., Goetz, V.: Definition, test and simulation of a thermochemical storage process adapted to solar thermal systems. Sol. Energy 80, 883–893 (2006). doi:10.1016/j.solener.2005.01.014

    Article  Google Scholar 

  • Lei, Z., Pan, N., Zhu, S.: Transient methods of thermal properties measurement on fibrous materials. J. Heat Transfer 132, 032601–032601 (2009). doi:10.1115/1.4000049

    Article  Google Scholar 

  • Lide, D.R. (ed.): CRC Handbook of Chemistry and physics, internet version 2005 (Thermal properties of Air, pp. 6–175). In: 90th Internet Edition. ed, Thermal Properties of Air, pp. 6–175. CRC Press LLC, Boca Raton, Florida, USA (2005)

    Google Scholar 

  • Marcus, S.M., Blaine, R.L.: Thermal conductivity of polymers, glasses and ceramics by modulated DSC. Thermochim. Acta 243, 231–239 (1994). doi:10.1016/0040-6031(94)85058-5

    Article  Google Scholar 

  • Mauran, S., Lahmidi, H., Goetz, V.: Solar heating and cooling by a thermochemical process. First experiments of a prototype storing 60kWh by a solid/gas reaction. Sol. Energy 82, 623–636 (2008). doi:10.1016/j.solener.2008.01.002

    Article  Google Scholar 

  • Melinder, A.: Thermophysical properties of liquid secondary refrigerants; Proprietes thermophysiques des frigoporteurs liquides (1997)

    Google Scholar 

  • Menard, D., Py, X., Mazet, N.: Activated carbon monolith of high thermal conductivity for adsorption processes improvement: Part B. Thermal regeneration. Chem. Eng. Process. 46, 565–572 (2007). doi:10.1016/j.cep.2006.07.013

    Article  Google Scholar 

  • Merzlyakov, M., Schick, C.: Thermal conductivity from dynamic response of DSC. Thermochimica Acta, Frequency and Time-Dependent Heat Capacity. A collection of Papers from the 6th Lahnwitzseminar on Calorimetry Kuhlungsborn, Germany, 12–18 June 2000 377, 183–191 (2001). doi:10.1016/S0040-6031(01)00553-6

    Google Scholar 

  • Michel, B.: Procédé thermochimique pour le stockage intersaisonnier de l’énergie solaire : modélisation multi-échelles et expérimentation d’un prototype sous air humide (Doctorate/Ph.D). Université de Perpignan, Perpignan—France (2012)

    Google Scholar 

  • Michel, B., Mazet, N., Mauran, S., Stitou, D., Xu, J.: Thermochemical process for seasonal storage of solar energy: characterization and modeling of a high density reactive bed. Energy 47, 553–563 (2012). doi:10.1016/j.energy.2012.09.029

    Article  Google Scholar 

  • N’Tsoukpoe, K.E., Schmidt, T., Rammelberg, H.U., Watts, B.A., Ruck, W.K.L.: A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage. Appl. Energy 124, 1–16 (2014). doi:10.1016/j.apenergy.2014.02.053

    Article  Google Scholar 

  • Olives, R., Mauran, S.: A highly conductive porous medium for solid–gas reactions: effect of the dispersed phase on the thermal tortuosity. Transp. Porous Media 43, 377–394 (2001)

    Article  Google Scholar 

  • Parker, W.J., Jenkins, R.J., Butler, C.P., Abbott, G.L.: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32, 1679–1684 (1961). doi:10.1063/1.1728417

    Article  Google Scholar 

  • Presley, M.A., Christensen, P.R.: Thermal conductivity measurements of particulate materials 1. A Rev. J. Geophys. Res. 102, 6535 (1997). doi:10.1029/96JE03302

    Article  Google Scholar 

  • Schick, C.: Chapter 16 Temperature modulated differential scanning calorimetry (TMDSC)-basics and applications to polymers. In: Stephen, Z.D., Cheng, B.V (ed.) Handbook of Thermal Analysis and Calorimetry, Applications to Polymers and Plastics, pp. 713–810. Elsevier Science (2002)

    Google Scholar 

  • Smalc, M., Skandakumaran, P., Norley, J.: Thermal performance of natural graphite heat spreaders with embedded thermal vias. ASME Proceeding InterPACK Conference, San Francisco, California USA, Heat Sink Modeling and Characterization 1, 607–617 (2007). doi:10.1115/IPACK2007-33215

    Google Scholar 

  • Tanashev, Y.Y., Krainov, A.V., Aristov, Y.I.: Thermal conductivity of composite sorbents “salt in porous matrix” for heat storage and transformation. Appl. Therm. Eng. 61, 401–407 (2013). doi:10.1016/j.applthermaleng.2013.08.022

    Article  Google Scholar 

  • Teng, H., Zhao, T.S.: An extension of Darcy’s law to non-Stokes flow in porous media. Chem. Eng. Sci. 55, 2727–2735 (2000). doi:10.1016/S0009-2509(99)00546-1

    Article  Google Scholar 

  • Tian, B., Jin, Z.Q., Wang, L.W., Wang, R.Z.: Permeability and thermal conductivity of compact chemical and physical adsorbents with expanded natural graphite as host matrix. Int. J. Heat Mass Transf. 55, 4453–4459 (2012). doi:10.1016/j.ijheatmasstransfer.2012.04.016

    Article  Google Scholar 

  • Tsotsas, E., Martin, H.: Thermal conductivity of packed beds: A review. Chem. Eng. Process. 22, 19–37 (1987). doi:10.1016/0255-2701(87)80025-9

    Article  Google Scholar 

  • Van Helden, W., Hauer, A.: Task 42—Annex 24, Compact thermal energy storage: material development for system integration—Final Report (Research and Engineering No. IEA SHC/ECES Task 42/24 Final Report), IEA SHC/ECES Task 42/24. International Energy Agency, Europe (2013a)

    Google Scholar 

  • Van Helden, W., Hauer, A.: 2012 Annual report-Feature article on advances in compact thermal energy storage—material development (Research and Engineering No. IEA Solar Heating & Cooling Programme), IEA Solar Heating and Cooling Programme. International Energy Agency, Europe (2013b)

    Google Scholar 

  • Vasques, A.R., Innocentini, M.D.M., Assis, O.B.G.: A Simple apparatus for determining the permeability of thin-thickness porous materials by pressure-decay technique. Revista de Fisica Aplicada e Instrumentacao, Instrum. 14, 4 (1999)

    Google Scholar 

  • Wang, K., Wu, J.Y., Wang, R.Z., Wang, L.W.: Effective thermal conductivity of expanded graphite–CaCl2 composite adsorbent for chemical adsorption chillers. Energy Convers. Manag. 47, 1902–1912 (2006). doi:10.1016/j.enconman.2005.09.005

    Article  Google Scholar 

  • Wen, D., Ding, Y.: Heat transfer of gas flow through a packed bed. Chem. Eng. Sci. 61, 3532–3542 (2006). doi:10.1016/j.ces.2005.12.027

    Article  Google Scholar 

  • Xamán, J., Lira, L., Arce, J.: Analysis of the temperature distribution in a guarded hot plate apparatus for measuring thermal conductivity. Appl. Therm. Eng. 29, 617–623 (2009). doi:10.1016/j.applthermaleng.2008.03.033

    Article  Google Scholar 

  • Yu, N., Wang, R.Z., Wang, L.W.: Sorption thermal storage for solar energy. Prog. Energy Combust. Sci. 39, 489–514 (2013). doi:10.1016/j.pecs.2013.05.004

    Article  Google Scholar 

  • Zalba, B., Marı́n, J.M., Cabeza, L.F., Mehling, H.: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 23, 251–283 (2003). doi:10.1016/S1359-4311(02)00192-8

    Google Scholar 

  • Zhang, X., Fujii, M.: Simultaneous measurements of the thermal conductivity and thermal diffusivity of molten salts with a transient short-hot-wire method. Int. J. Thermophys. 21, 71–84 (2000). doi:10.1023/A:1006604820755

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armand Fopah Lele .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fopah Lele, A. (2016). Characterization of Thermal Transfers and Chemical Kinetics. In: A Thermochemical Heat Storage System for Households. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-41228-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41228-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41227-6

  • Online ISBN: 978-3-319-41228-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics