Skip to main content

Analyses of Biomass Fibers by XRD, FT-IR, and NIR

  • Chapter
  • First Online:
Analytical Techniques and Methods for Biomass

Abstract

This chapter involves the description and application of three advanced analytical techniques that are currently used to assess the potential of biomass for the production of biofuels, feeds, and chemicals. X-ray diffraction, FT-IR, and NIR may be used to study the structure of fibers in native biomass as well as changes during conditioning, pretreatment, and processing in a modern biorefinery. X-ray diffraction is used mainly to study the crystallinity of the samples based on the cellulose fraction which is one of the two major barriers for hydrolysis. FT-IR is used to get insight about the presence and interactions of main components of the fiber such as cellulose, hemicelluloses, and lignin. NIR is mainly used for a fast chemical characterization of the biomass and it is gaining a place to study changes caused by the pretreatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul PM, Jahim JM, Harun S, Markom M, Lutpi NA, Hassan O, Balan V, Dale BE, Mohd MT (2016) Effects of changes in chemical and structural characteristic of ammonia fibre expansion (AFEX) pretreated oil palm empty fruit bunch fibre on enzymatic saccharification and fermentability for biohydrogen. Bioresource Technol 211:200–208

    Article  Google Scholar 

  • Alciaturi C, Escobar ME, Vallejo R (1996) Prediction of coal properties by derivative DRIFT spectroscopy. Fuel 75(4):491–499

    Article  Google Scholar 

  • Balan V, Sousa LC, Chundawat SPS, Marshall D, Sharma LN, Chambliss CK, Dale BE (2009) Enzymatic digestibility and pretreatment degradation products of AFEX-treated hardwoods (Populus nigra). Biotechnol Prog 25(2):365–375

    Article  Google Scholar 

  • Baldinger T, Moosbauer J, Sixta H (2000) Supermolecular structure of cellulosic materials by Fourier transform infrared spectroscopy (FT-IR) calibrated by WAXS and 13C-NMR. Lenzing Berichte 79:15–17

    Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  Google Scholar 

  • Coates J (2000) Interpretation of infrared spectra, a practical approach. In: Meyers RA (ed) Encyclopedia of Analytical Chemistry. John Wiley & Sons, New York, pp 10815–10837

    Google Scholar 

  • Cooley TW, Tukey TW (1965) An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation 19:297–306

    Article  MathSciNet  MATH  Google Scholar 

  • Corgié SC, Smith HM, Walker LP (2011) Enzymatic transformations of cellulose assessed by quantitative high throughput fourier transform infrared spectroscopy (QHTFTIR). Biotechnol Bioeng 108(7):1509–1520

    Article  Google Scholar 

  • Cozzolino D, Fassio A, Gimenez A (2000) The use of near-infrared reflectance spectroscopy (NIRS) to predict the composition of whole maize plants. J Sci Food Agric 81:142–146

    Article  Google Scholar 

  • Davies AMC (2005) An introduction to near infrared spectroscopy. NIR News 16(7):9–11

    Article  Google Scholar 

  • Doner LM, Hicks K (1997) Isolation of hemicellulose from corn fibre by alkaline hydrogen peroxide extraction. Cereal Chem 74:176–181

    Article  Google Scholar 

  • Donohoe BS, Tucker MP, Davis M, Decker SR, Himmel ME, Vinzant TB (2007) Tracking lignin coalescence and migration through plant cell walls during pretreatment. Abstracts of the 29th symposium on biotechnology for fuels and chemicals. Denver, CO, 29 Apr–2 May. 5B-01, p 67

    Google Scholar 

  • Duchesne I, Hult EL, Molin U, Daniel G, Iversen T, Lennholm H (2001) The influence of hemicellulose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS 13C-NMR. Cellulose 8:103–111

    Article  Google Scholar 

  • Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibres. In: Salih S (ed) Fourier transform – materials analysis. InTech, Dublin, http://www.intechopen.com/books/fourier-transform-materials-analysis/fourier-transform-infrared-spectroscopy-for-natural-fibres

    Google Scholar 

  • Faneite A (2010) Cinética del secado de materiales lignocelulósicos tratados y no tratados con presurización y despresurización (PDA) (Drying kinetics of lignocellulosic materials untreated and treated with pressurization and depressurization with ammonia (PDA)). Tesis. Magister Scientiarum en Ingeniería Química. Universidad del Zulia, Maracaibo, Venezuela

    Google Scholar 

  • Faneite A, Ferrer A, Aiello-Mazzarri C, Villegas J, Gnansounou E (2011) Interaction between chemical composition, microcrystalline structure and morphology of the most important agricultural byproducts in the northern of South America, and drying kinetics. In: Proceedings of the XIX international symposium of alcohol fuels, Verona, Italy, Oct 2011, p 1–6

    Google Scholar 

  • Fearn T (2005) Chemometrics: an enabling tool for NIR. NIR News 16(7):17–19

    Article  Google Scholar 

  • Ferrer A, Sulbarán-de-Ferrer B, Byers FM, Dale BE, Aiello C (1997) Aumento y aprovechamiento del potencial nutritivo de forrajes y residuos mediante procesos amoniacales y enzimáticos para alimentación de animales rumiantes y monogástricos (Enhancing the nutritional potential of forages and residues by ammonia and enzymatic processes to produce feeds for ruminant and monogastric animals). In: Primer Encuentro de Productores Agrícolas con la Biotecnología. Fundacite-Zulia. J. B. Editores. Maracaibo. p 171–194

    Google Scholar 

  • Ferrer A, Byers FM, Sulbarán-de-Ferrer B, Dale BE, Aiello C (2000) Optimizing ammonia pressurization/depressurization processing conditions to enhance enzymatic susceptibility of dwarf elephant grass. Appl Biochem Biotechnol 84(86):163–179

    Article  Google Scholar 

  • Ferrer A, Ríos J, Urribarrí L (2013) Biorefinación de la Lemna obscura del Lago de Maracaibo. Parte II Producción de alimentos para animales y bioetanol (Biorefining of Lemna obscura from Lake Maracaibo. Part II. Production of animal feeds and bioethanol. In: Boves M, Rincón JE (eds) Eutrofización del Lago de Maracaibo: Pasado. Presente y perspectivas. Universidad del Zulia, Zulia, pp 257–286

    Google Scholar 

  • Festucci-Buselli R, Otoni W, Joshi C (2007) Structure, organization, and functions of cellulose synthase complexes in higher plants. Review. Braz J Plant Physiol 19(1):1–13

    Article  Google Scholar 

  • Fitoussi C, Chiesa S, Villegas J, Gnansounou E, Alciaturi C, Ferrer A (2011) Compositional analysis of biomass feedstocks via near infrared spectroscopy for second-generation bioethanol production. Paper presented at the 33rd symposium of biotechnology for fuels and chemicals. Seattle, 2–5 May

    Google Scholar 

  • Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558

    Article  Google Scholar 

  • Geladi P, Kowalski BR (1986) Partial least squares regression: a tutorial. Anal Chim Acta 185:1–17

    Article  Google Scholar 

  • Goering H, Van Soest P (1970) Forage fiber analyses (apparatus, reactants, procedures, and some applications), Agriculture handbook n° 379. ARS-USDA, Washington, DC

    Google Scholar 

  • Gollapalli LE, Dale BE, Rivers DM (2002) Predicting digestibility of ammonia fiber explosion (AFEX)-treated rice straw. Appl Biochem Biotechnol 98(100):23–35

    Article  Google Scholar 

  • Griffiths PR, De Haseth JA (2007) Fourier transform infrared spectrometry, 2nd edn. John Wiley & Sons, New York

    Book  Google Scholar 

  • Hames BR, Thomas SR, Sluiter AD, Roth CJ, Templeton DW (2003) Rapid biomass analysis. Appl Biochem Biotechnol 105(108):5–16

    Article  Google Scholar 

  • Hegde RR, Kamath MG, Dahiya A (2004) Polymer crystallinity Nonwovens science and technology II. Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, http://www.engr.utk.edu/mse/Textiles/Polymer%20Crystallinity.htm. Accessed 30 Mar 2016

  • Himmelsbach DS, Khalili S, Akin DE (2002) The use of FT-IR microspectroscopic mapping to study the effects of enzymatic retting of flax (Linum usitatissium L.) stems. J Sci Food Agric 82:685–696

    Article  Google Scholar 

  • Ibrahim MM, El-Zawawy WK, Abdel-Fattah YR, Soliman NA, Agblevor FA (2011) Comparison of alkaline pulping with steam explosion for glucose production from rice straw. Carbohyd Polym 83:720–726

    Article  Google Scholar 

  • Jayme V, Knolle H (1964) The empirical x-ray determination of the degree of crystallinity of cellulosic material. Papier 18:249–255

    Google Scholar 

  • Jin S, Chen H (2007) Near-infrared analysis of the chemical composition of rice straw. Ind Crop Prod 26:207–211

    Article  Google Scholar 

  • Kacurákova M, Capeka P, Sasinkova V, Wellnerb N, Ebringerova A (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohyd Polym 43:195–203

    Article  Google Scholar 

  • Kaparaju P, Felby C (2010) Characterization of lignin during oxidative and hydrothermal pre-treatment processes of wheat straw and corn stover. Bioresource Technol 101:175–3181

    Article  Google Scholar 

  • Kelley SS, Rowell RM, Davis M, Jurich CK, Ibach R (2004) Rapid analysis of the chemical composition of agricultural fibers using near infrared spectroscopy and pyrolysis molecular beam mass spectrometry”. Biomass Bioenerg 27:77–88

    Article  Google Scholar 

  • Kemp W (1991) Organic Spectroscopy, 3rd edn. Palgrave Macmillan, London

    Book  Google Scholar 

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry, vol l. Fundamentals and analytical methods. Weinheim, Wiley-VCH Verlag GmbH, pp 14–18, 48–50

    Book  Google Scholar 

  • Krässig H (1993) Cellulose structure, accessibility and reactivity. Polymer monographs, vol 11. Gordon and Breach Science Publishers, Amsterdam, pp 12–16, 45–48

    Google Scholar 

  • Kristensen JB, Thygesen LG, Felby C, Jørgensen H, Elder T (2008) Cell wall structural changes in wheat straw pretreated for bioethanol production. Biotechnology Biofuels 1(5):1–9

    Google Scholar 

  • Landis C (1971) Graphitization of dispersed carbonaceous materials in metamorphic rocks. Lithos 14:215–224

    Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2:410–416

    Article  Google Scholar 

  • Lee JM, Shi J, Venditti RA, Jameel H (2009) Autohydrolysis pretreatment of coastal Bermuda grass for increased enzyme hydrolysis. Bioresource Technol 100:6434–6441

    Article  Google Scholar 

  • Lee JM, Hasan J, Venditti RA (2010) A comparison of the autohydrolysis and ammonia fiber explosion (AFEX) pretreatments on the subsequent enzymatic hydrolysis of coastal Bermuda grass. Bioresource Technol 101:5449–5458

    Google Scholar 

  • Lennholm H, Iversen T (1995) The effects of laboratory beating on cellulose structure. Nordic Pulp Paper Res J 10:104–109

    Article  Google Scholar 

  • Li J, Gellerstedt G, Toven K (2009) Steam explosion lignins: their extraction, structure and potential as feedstock for biodiesel and chemicals. Bioresource Technol 100:2556–2561

    Article  Google Scholar 

  • Liu L, Ye XP, Womac AR, Sokhansanj S (2010) Variability of biomass chemical composition and rapid analysis using FT-NIR techniques. Carbohyd Polym 81:820–829

    Article  Google Scholar 

  • Liu Z, Fatehi P, Jahan MS, Ni Y (2011) Separation of lignocellulosic materials by combined processes of pre-hydrolysis and ethanol extraction. Bioresource Technol 102:1264–1269

    Article  Google Scholar 

  • Lupoi JS, Singh S, Davis M, Lee DJ, Shepherd M, Simmons BA, Henry RJ (2014a) High-throughput prediction of eucalypt lignin syringyl/guaiacyl content using multivariate analysis: a comparison between mid-infrared, near-infrared, and Raman spectroscopies for model development. Biotechnol Biofuels 7:93 (open Access number)

    Article  Google Scholar 

  • Lupoi JS, Singh S, Simmons BA, Henry RJ (2014b) Assessment of lignocellulosic biomass using analytical spectroscopy: an evolution to high throughput techniques. Bioenerg Res 7:1–23

    Article  Google Scholar 

  • Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohyd Polyms 86:1291–1299

    Article  Google Scholar 

  • Marchessault R, Sarko A (1968) X-Ray structure of polysaccharides. Adv Carbohyd Chem Biochem 22:429–449

    Google Scholar 

  • Marten G, Shenk J, Barton III F (1989) Editors “near infrared reflectance spectroscopy (NIRS): analysis of forage quality”. USDA Agriculture research service handbook, n° 643

    Google Scholar 

  • Miao CW, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20:2221–2262

    Article  Google Scholar 

  • Montiel M, Rodriguez D (2008) Optimización de las condiciones de tratamiento PDA del follaje de yuca para la obtención de concentrados protéicos (Optimizing conditions of PDA treatment of cassava foliage to obtain protein concentrates). Tesis. Ingeniería Química. Universidad Rafael Urdaneta, Maracaibo, Venezuela

    Google Scholar 

  • Naik S, Goud VV, Rout PK, Jacobson K, Dalai AK (2010) Characterization of Canadian biomass for alternative renewable biofuel. Renew Energ 35:1624–1631

    Article  Google Scholar 

  • Nelson M, O’Connor R (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part I. Spectra of lattice type I, II, III and amorphus cellulose. J Appl Polym Sci 9:1311–1324

    Article  Google Scholar 

  • Ozaki Y (2012) Near-infrared spectroscopy—its versatility in analytical chemistry. Anal Sci 28:545–563

    Article  Google Scholar 

  • Pasquini C (2003) Near infrared spectroscopy: fundamentals, practical aspects and analytical applications. J Braz Chem Soc 14(2):198–219

    Article  Google Scholar 

  • Peters J (2003) Caracterización de las fracciones protéicas de pasto elefante enano tratado con amoníaco (Pennisetum pupureum Schum. cv. Mott) (Characterization of the protein fractions of dwarf elephant grass treated with ammonia (Pennisetum pupureum Schum. Cv. Mott). Tesis. Licenciado en Química, Universidad del Zulia, Maracaibo

    Google Scholar 

  • Poletto M, Pistor V, Zeni M, Zattera AJ (2011) Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes. Polym Degrad Stabil 96:679–685

    Article  Google Scholar 

  • Poletto M, Pistor V, Campomanes RM, Zattera AJ (2012) Materials produced from plant biomass. Part II: evaluation of crystallinity and degradation kinetics of cellulose. Mater Res 15(3):421–427

    Article  Google Scholar 

  • Qi B, Chen X, Shen F, Su Y, Wan Y (2009) Optimization of enzymatic hydrolysis of wheat straw pretreated by alkaline peroxide using response surface methodology. Ind Eng Chem Res 48:7346–7353

    Article  Google Scholar 

  • Ren JL, Sun RC, Liu CF, Lin L, He BH (2007) Synthesis and characterization of novel cationic SCB hemicelluloses with a low degree of substitution. Carbohyd Polym 67:347–357

    Article  Google Scholar 

  • Rezende CA, de Lima MA, Maziero P, deAzevedo ER, Garcia W, Polikarpov I (2011) Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels 4:54. doi:10.1186/17546834454

    Article  Google Scholar 

  • Ríos J (2009) Extracción, precipitación y caracterización de las proteínas de la lenteja acuática (Lemna obscura) tratada con amoníaco (Extraction, precipitation and characterization of proteins from duckweed (Lemna obscura) treated with ammonia). Tesis. Licenciado en Química. Universidad del Zulia, Maracaibo, Venezuela

    Google Scholar 

  • Roncero M (2001) Obtención de una secuencia “TCF” con la aplicación de ozono y enzimas, para el blanqueo de pastas madereras y de origen agrícola. Optimización de la etapa Z. Análisis de los efectos en la fibra celulósica y sus componentes (Getting a sequence “TCF” with the application of ozone and enzymes for bleaching wood and agricultural pulps. Optimization of stage Z. Analysis of the effects on the cellulosic fiber and its components). Tesis doctoral, Departamento de Ingeniería Textil y Papelera, Universidad Politécnica de Cataluña, España

    Google Scholar 

  • Sannigrahi P, Miller SJ, Rgawskas AJ (2010) Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydr Res 345:965–970

    Article  Google Scholar 

  • Schmidt AS, Thomsen AB (1998) Optimization of wet oxidation pre-treatment of wheat straw. Bioresource Technol 64:139–151

    Article  Google Scholar 

  • Segal L, Creely J, Martin A, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  Google Scholar 

  • Sills DL, Gossett JM (2012) Using FT-IR to predict saccharification from enzymatic hydrolysis of alkali-pretreated biomasses. Biotechnol Bioeng 109:353–362

    Article  Google Scholar 

  • Sindhu R, Kuttiraja M, Binod P, Janu KU, Sukumaran RK, Pandey A (2011) Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production. Bioresource Technol 102:10915–10921

    Article  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765

    Article  Google Scholar 

  • Socrates G (2001) Infrared and Raman characteristic group frequencies: tables and charts. John Wiley & Sons, New York

    Google Scholar 

  • Stark E, Luchter K (2005) NIR instrumentation technology. NIR News 16(7):13–16

    Article  Google Scholar 

  • Sun RC, Tomkinson J, Ma PL, Liang SF (2000) Comparative study of hemicelluloses from rice straw by alkali and hydrogen peroxide treatments. Carbohyd Polym 42:111–122

    Google Scholar 

  • Sun RC, Sun XF, Wang SQ, Zhu W, Wang XW (2002) Ester and ether linkages between hydroxycinnamic acids and lignins from wheat, rice, rye, and barley straws, maize stems, and fast-growing poplar wood. Ind Crop Prod 15:179–188

    Article  Google Scholar 

  • Sun XF, Sun RC, Fowler P, Baird MS (2004a) Isolation and characterization of cellulose obtained by a two-stage treatment with organosolv and cyanamide activated hydrogen peroxide from wheat straw. Carbohyd Polym 55:379–391

    Article  Google Scholar 

  • Sun JX, Sun XF, Zhao H, Sun RC (2004b) Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stabil 84:331–339

    Article  Google Scholar 

  • Sun XF, Xu F, Sun RC, Fowler P, Baird MS (2005) Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohyd Res 340:97–106

    Article  Google Scholar 

  • Therdthai N, Zhou W (2009) Characterization of microwave vacuum drying and hot air drying of mint leaves (Mentha cordifolia Opiz ex Fresen). J Food Eng 91(3):482–489

    Article  Google Scholar 

  • Uraki Y, Koda K (2015) Utilization of wood cell wall components. Review. J Wood Sci 61(5):447–454

    Article  Google Scholar 

  • Urribarrí L (2011) Sacarificación y fermentación simultánea de bagazo de caña de azúcar tratado con amoníaco (Simultaneous saccharification and fermentation of sugarcane bagasse treated with ammonia). PhD Dissertation in Chemistry. University of Zulia, Maracaibo, Venezuela

    Google Scholar 

  • Urribarrí L, Chacón D, González O, Ferrer A (2009) Protein extraction and enzymatic hydrolysis of ammonia-treated cassava leaves (Manihot esculenta Crantz). Appl Biochem Biotechnol 153:94–103

    Article  Google Scholar 

  • Urribarrí L, Ferrer A, Aiello C, Rivera J (2013) Bioethanol from sugarcane bagasse. In: Proceedings of the 2nd Iberoamerican congress on biorefineries, Jaén, España, Apr 2013, p 1–6

    Google Scholar 

  • Varmuza K, Filzmoser P (2009) Introduction to multivariate statistical analysis in chemometrics. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Weise U (1998) Hornification – mechanisms and a terminology. Paper Timber 80(2):110–114

    Google Scholar 

  • Xiao B, Sun XF, Sun RC (2001) Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym Degrad Stabil 74:307–319

    Article  Google Scholar 

  • Xiao L, Wei H, Himmel ME, Jameel H, Kelley SS (2014) NIR and Py-mbms coupled with multivariate data analysis as a high-throughput biomass characterization technique: a review. Front Plant Sci 5:388, (open access number) http://journal.frontiersin.org/article/10.3389/fpls.2014.00388/full

  • Xu F, Yu J, Tesso T, Dowell F, Wang D (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energ 104:801–809

    Article  Google Scholar 

  • Yue Y, Han J, Han G, Zhang Q, French AD, Wu Q (2015) Characterization of cellulose I/II hybrid fibers isolated from energycane bagasse during the delignification process: morphology, crystallinity and percentage estimation. Carbohyd Polyms 133:438–447

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Ferrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ferrer, A., Alciaturi, C., Faneite, A., Ríos, J. (2016). Analyses of Biomass Fibers by XRD, FT-IR, and NIR. In: Vaz Jr., S. (eds) Analytical Techniques and Methods for Biomass. Springer, Cham. https://doi.org/10.1007/978-3-319-41414-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41414-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41413-3

  • Online ISBN: 978-3-319-41414-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics