Skip to main content

Adhesion GPCRs as a Putative Class of Metabotropic Mechanosensors

  • Chapter
  • First Online:
Adhesion G Protein-coupled Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 234))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffman BD, Grashoff C, Schwartz MA (2011) Dynamic molecular processes mediate cellular mechanotransduction. Nature 475:316–323. doi:10.1038/nature10316

    Article  CAS  PubMed  Google Scholar 

  2. Cantor RS (1997) Lateral pressures in cell membranes: a mechanism for modulation of protein function. J Phys Chem B 101:1723–1725. doi:10.1021/jp963911x

    Article  CAS  Google Scholar 

  3. Guharay F, Sachs F (1984) Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol 352:685–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guharay F, Sachs F (1985) Mechanotransducer ion channels in chick skeletal muscle: the effects of extracellular pH. J Physiol 363:119–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C (1994) A large-conductance mechanosensitive channel in E coli encoded by mscL alone. Nature 368:265–268. doi:10.1038/368265a0

    Article  CAS  PubMed  Google Scholar 

  6. Levina N, Tötemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18:1730–1737. doi:10.1093/emboj/18.7.1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Perozo E, Rees DC (2003) Structure and mechanism in prokaryotic mechanosensitive channels. Curr Opin Struct Biol 13:432–442

    Article  CAS  PubMed  Google Scholar 

  8. Ajouz B, Berrier C, Garrigues A, Besnard M, Ghazi A (1998) Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of Escherichia coli cells. J Biol Chem 273:26670–26674

    Article  CAS  PubMed  Google Scholar 

  9. Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654. doi:10.1038/nature03896

    Article  CAS  PubMed  Google Scholar 

  10. Ge J, Li W, Zhao Q, Li N, Chen M, Zhi P et al (2015) Architecture of the mammalian mechanosensitive Piezo1 channel. Nature 527:64–69. doi:10.1038/nature15247

    Article  CAS  PubMed  Google Scholar 

  11. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ et al (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60. doi:10.1126/science.1193270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Coste B, Xiao B, Santos JS, Syeda R, Grandl J, Spencer KS et al (2012) Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483:176–181. doi:10.1038/nature10812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gottlieb PA, Sachs F (2011) Piezo1: properties of a cation selective mechanical channel. Channels (Austin) 6:214–219. doi:10.4161/chan.21050

    Article  CAS  Google Scholar 

  14. Woo SH, Ranade S, Weyer AD, Dubin AE, Baba Y (2014) Piezo2 is required for Merkel-cell mechanotransduction. Nature 509:622–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Coste B, Murthy SE, Mathur J, Schmidt M, Mechioukhi Y, Delmas P et al (2015) Piezo1 ion channel pore properties are dictated by C-terminal region. Nat Commun 6:7223. doi:10.1038/ncomms8223

    Article  PubMed  PubMed Central  Google Scholar 

  16. Faucherre A, Nargeot J, Mangoni ME, Jopling C (2013) Piezo2b regulates vertebrate light touch response. J Neurosci 33:17089–17094. doi:10.1523/JNeurosci0522-13.2013

    Article  CAS  PubMed  Google Scholar 

  17. Faucherre A, Kissa K, Nargeot J, Mangoni ME, Jopling C (2014) Piezo1 plays a role in erythrocyte volume homeostasis. Haematologica 99:70–75. doi:10.3324/haematol.2013.086090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li J, Hou B, Tumova S, Muraki K, Bruns A, Ludlow MJ et al (2014) Piezo1 integration of vascular architecture with physiological force. Nature 515:279–282. doi:10.1038/nature13701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ranade SS, Qiu Z, Woo SH, Hur SS (2014) Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci U S A 111(28):10347–10352. doi:10.1073/pnas.1409233111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim SE, Coste B, Chadha A, Cook B, Patapoutian A (2012) The role of Drosophila Piezo in mechanical nociception. Nature 483:209–212. doi:10.1038/nature10801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Canessa CM, Horisberger JD, Rossier BC (1993) Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361:467–470. doi:10.1038/361467a0

    Article  CAS  PubMed  Google Scholar 

  22. Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD et al (1994) Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367:463–467. doi:10.1038/367463a0

    Article  CAS  PubMed  Google Scholar 

  23. Driscoll M, Chalfie M (1991) The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349:588–593. doi:10.1038/349588a0

    Article  CAS  PubMed  Google Scholar 

  24. Lingueglia E, Voilley N, Waldmann R, Lazdunski M, Barbry P (1993) Expression cloning of an epithelial amiloride-sensitive Na+ channel. A new channel type with homologies to Caenorhabditis elegans degenerins. FEBS Lett 318:95–99

    Article  CAS  PubMed  Google Scholar 

  25. Kellenberger S, Schild L (2002) Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 82:735–767. doi:10.1152/physrev.00007.2002

    Article  CAS  PubMed  Google Scholar 

  26. Askwith CC, Wemmie JA, Price MP, Rokhlina T, Welsh MJ (2004) Acid-sensing ion channel 2 (ASIC2) modulates ASIC1 H+-activated currents in hippocampal neurons. J Biol Chem 279:18296–18305. doi:10.1074/jbc.M312145200

    Article  CAS  PubMed  Google Scholar 

  27. Baron A, Voilley N, Lazdunski M, Lingueglia E (2008) Acid sensing ion channels in dorsal spinal cord neurons. J Neurosci 28:1498–1508. doi:10.1523/JNEUROSCI.4975-07.2008

    Article  CAS  PubMed  Google Scholar 

  28. Benson CJ, Xie J, Wemmie JA, Price MP, Henss JM, Welsh MJ et al (2002) Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons. Proc Natl Acad Sci U S A 99:2338–2343. doi:10.1073/pnas.032678399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chalfie M, Sulston J (1981) Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev Biol 82:358–370

    Article  CAS  PubMed  Google Scholar 

  30. Sulston J, Dew M, Brenner S (1975) Dopaminergic neurons in the nematode Caenorhabditis elegans. J Comp Neurol 163:215–226. doi:10.1002/cne.901630207

    Article  CAS  PubMed  Google Scholar 

  31. Chalfie M, Au M (1989) Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science 243:1027–1033

    Article  CAS  PubMed  Google Scholar 

  32. Goodman MB, Ernstrom GG, Chelur DS, O’Hagan R, Yao CA, Chalfie M (2002) MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature 415:1039–1042. doi:10.1038/4151039a

    Article  CAS  PubMed  Google Scholar 

  33. Zhang S, Árnadóttir J, Keller C, Caldwell GA, Yao CA, Chalfie M (2004) MEC-2 is recruited to the putative mechanosensory complex in C. elegans touch receptor neurons through its stomatin-like domain. Curr Biol 14:1888–1896. doi:10.1016/j.cub.2004.10.030

    Article  CAS  PubMed  Google Scholar 

  34. Chelur DS, Ernstrom GG, Goodman MB, Yao CA, Chen L, O’Hagan R et al (2002) The mechanosensory protein MEC-6 is a subunit of the C. elegans touch-cell degenerin channel. Nature 420:669–673. doi:10.1038/nature01205

    Article  CAS  PubMed  Google Scholar 

  35. Huang M, Chalfie M (1994) Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature 367:467–470. doi:10.1038/367467a0

    Article  CAS  PubMed  Google Scholar 

  36. O’Hagan R, Chalfie M, Goodman MB (2004) The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat Neurosci 8:43–50. doi:10.1038/nn1362

    Article  PubMed  CAS  Google Scholar 

  37. Getz GS, Reardon CA (2004) Paraoxonase, a cardioprotective enzyme: continuing issues. Curr Opin Lipidol 15:261

    Article  CAS  PubMed  Google Scholar 

  38. Huber TB, Schermer B, Muller RU, Hohne M, Bartram M, Calixto A et al (2006) Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proc Natl Acad Sci U S A 103:17079–17086. doi:10.1073/pnas.0607465103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Barnes TM, Jin Y, Horvitz HR, Ruvkun G (1996) The Caenorhabditis elegans behavioral gene unc-24 encodes a novel bipartite protein similar to both erythrocyte band 7.2 (stomatin) and nonspecific lipid transfer protein. J Neurochem 67(1):46–57

    Article  CAS  PubMed  Google Scholar 

  40. Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524. doi:10.1038/nature02196

    Article  CAS  PubMed  Google Scholar 

  41. Montell C (2005) The TRP superfamily of cation channels. Sci Signal 2005:re3. doi:10.1126/stke.2722005re3

    Article  Google Scholar 

  42. Christensen AP, Corey DP (2007) TRP channels in mechanosensation: direct or indirect activation? Nat Rev Neurosci 8:510–521. doi:10.1038/nrn2149

    Article  CAS  PubMed  Google Scholar 

  43. Owsianik G, Talavera K, Voets T, Nilius B (2006) Permeation and selectivity of TRP channels. Annu Rev Physiol 68:685–717. doi:10.1146/annurev.physiol.68.040204.101406

    Article  CAS  PubMed  Google Scholar 

  44. Schnitzler MMY, Storch U, Meibers S, Nurwakagari P, Breit A, Essin K et al (2008) Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J 27:3092–3103. doi:10.1038/emboj.2008.233

    Article  CAS  Google Scholar 

  45. Quick K, Zhao J, Eijkelkamp N, Linley JE, Rugiero F, Cox JJ et al (2012) TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells. Open Biol 2:120068. doi:10.1098/rsob.120068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Sexton JE, Desmonds T, Quick K, Taylor R, Abramowitz J, Forge A et al (2015) The contribution of TRPC1, TRPC3, TRPC5 and TRPC6 to touch and hearing. Neurosci Lett 610:36–42. doi:10.1016/j.neulet.2015.10.052

    Article  PubMed  CAS  Google Scholar 

  47. Eberl DF, Hardy RW, Kernan MJ (2000) Genetically similar transduction mechanisms for touch and hearing in Drosophila. J Neurosci 20:5981–5988

    CAS  PubMed  Google Scholar 

  48. Walker RG, Willingham AT, Zuker CS (2000) A Drosophila mechanosensory transduction channel. Science 287:2229–2234

    Article  CAS  PubMed  Google Scholar 

  49. Sidi S, NompC TRP (2003) Channel required for vertebrate sensory hair cell mechanotransduction. Science 301:96–99. doi:10.1126/science.1084370

    Article  CAS  PubMed  Google Scholar 

  50. Li W, Feng Z, Sternberg PW, Xu XZS (2006) A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature 440:684–687. doi:10.1038/nature04538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee J, Moon S, Cha Y, Chung YD (2010) Drosophila TRPN(=NOMPC) channel localizes to the distal end of mechanosensory cilia. PLoS One 5(6), e11012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Cheng LE, Song W, Looger LL, Jan LY, Jan YN (2010) The role of the TRP channel NompC in Drosophila larval and adult locomotion. Neuron 67:373–380. doi:10.1016/j.neuron.2010.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yan Z, Zhang W, He Y, Gorczyca D, Xiang Y, Cheng LE et al (2013) Nature 493:221–225. doi:10.1038/nature11685

    Article  CAS  PubMed  Google Scholar 

  54. Gong J, Wang Q, Wang Z (2013) NOMPC is likely a key component of Drosophila mechanotransduction channels. Eur J Neurosci 38:2057–2064. doi:10.1111/ejn.12214

    Article  PubMed  Google Scholar 

  55. Liang X, Madrid J, Gärtner R, Verbavatz J-M, Schiklenk C, Wilsch-Bräuninger M et al (2013) A NOMPC-dependent membrane-microtubule connector is a candidate for the gating spring in fly mechanoreceptors. Curr Biol 23:755–763. doi:10.1016/j.cub.2013.03.065

    Article  CAS  PubMed  Google Scholar 

  56. Zhang W, Cheng LE, Kittelmann M, Li J, Petkovic M, Cheng T et al (2015) Ankyrin repeats convey force to gate the NOMPC mechanotransduction channel. Cell 162:1391–1403. doi:10.1016/j.cell.2015.08.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Göpfert MC, Albert JT, Nadrowski B, Kamikouchi A (2006) Specification of auditory sensitivity by Drosophila TRP channels. Nat Neurosci 9:999–1000. doi:10.1038/nn1735

    Article  PubMed  CAS  Google Scholar 

  58. Lehnert BP, Baker AE, Gaudry Q, Chiang A-S, Wilson RI (2013) Distinct roles of TRP channels in auditory transduction and amplification in Drosophila. Neuron 77:115–128. doi:10.1016/j.neuron.2012.11.030

    Article  CAS  PubMed  Google Scholar 

  59. Scholz N, Gehring J, Guan C, Ljaschenko D, Fischer R, Lakshmanan V et al (2015) The adhesion GPCR latrophilin/CIRL shapes mechanosensation. Cell Rep. doi:10.1016/j.celrep.2015.04.008

    PubMed  Google Scholar 

  60. Tobin DM, Madsen DM, Kahn-Kirby A, Peckol EL (2002) Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron 35(2):307–318

    Article  CAS  PubMed  Google Scholar 

  61. Kaplan JM, Horvitz HR (1993) A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. Proc Natl Acad Sci U S A 90(6):2227–2231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Colbert HA, Smith TL, Bargmann CI (1997) OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J Neurosci 17:8259–8269

    CAS  PubMed  Google Scholar 

  63. Kim J, Chung YD, Park D-Y, Choi S, Shin DW, Soh H et al (2003) A TRPV family ion channel required for hearing in Drosophila. Nature 424:81–84. doi:10.1038/nature01733

    Article  CAS  PubMed  Google Scholar 

  64. Gong Z, Son W, Chung YD, Kim J, Shin DW, McClung CA et al (2004) Two interdependent TRPV channel subunits, inactive and Nanchung, mediate hearing in Drosophila. J Neurosci 24:9059–9066. doi:10.1523/JNeurosci.1645-04.2004

    Article  CAS  PubMed  Google Scholar 

  65. Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsiokas L et al (2000) Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature 408:990–994. doi:10.1038/35050128

    Article  CAS  PubMed  Google Scholar 

  66. Yu Y, Ulbrich MH, Li M-H, Buraei Z, Chen X-Z, Ong ACM et al (2009) Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proc Natl Acad Sci U S A 106:11558–11563. doi:10.1073/pnas.0903684106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X et al (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137. doi:10.1038/ng1076

    Article  CAS  PubMed  Google Scholar 

  68. Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J (2008) Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117:1161–1171. doi:10.1161/CIRCULATIONAHA.107.710111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. AbouAlaiwi WA, Takahashi M, Mell BR, Jones TJ, Ratnam S, Kolb RJ et al (2009) Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circ Res 104:860–869. doi:10.1161/CIRCRESAHA.108.192765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sharif-Naeini R, Folgering JHA, Bichet D, Duprat F, Lauritzen I, Arhatte M et al (2009) Polycystin-1 and -2 dosage regulates pressure sensing. Cell 139:587–596. doi:10.1016/j.cell.2009.08.045

    Article  CAS  PubMed  Google Scholar 

  71. Wilson PD (2004) Polycystic kidney disease: new understanding in the pathogenesis. Int J Biochem Cell Biol 36:1868–1873. doi:10.1016/j.biocel.2004.03.012

    Article  CAS  PubMed  Google Scholar 

  72. Harris PC, Torres VE (2009) Polycystic kidney disease. Annu Rev Med 60:321–337. doi:10.1146/annurev.med.60.101707.125712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nieberler M, Kittel RJ, Petrenko AG, Lin H-H, Langenhan T (2016) Control of adhesion GPCR function through proteolytic processing. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  74. Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184:71–79

    Article  CAS  PubMed  Google Scholar 

  75. Köttgen M, Buchholz B, Garcia-Gonzalez MA, Kotsis F, Fu X, Doerken M et al (2008) TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 182:437–447. doi:10.1083/jcb.200805124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Brohawn SG (2015) How ion channels sense mechanical force: insights from mechanosensitive K2P channels TRAAK, TREK1, and TREK2. Ann N Y Acad Sci 1352:20–32. doi:10.1111/nyas.12874

    Article  CAS  PubMed  Google Scholar 

  77. Noël J, Sandoz G, Lesage F (2014) Molecular regulations governing TREK and TRAAK channel functions. Channels (Austin) 5:402–409. doi:10.4161/chan.5.5.16469

    Article  CAS  Google Scholar 

  78. Brohawn SG, Su Z, MacKinnon R (2014) Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels. Proc Natl Acad Sci U S A 111:3614–3619. doi:10.1073/pnas.1320768111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Enyedi P, Czirják G (2010) Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 90:559–605. doi:10.1152/physrev.00029.2009

    Google Scholar 

  80. Alloui A, Zimmermann K, Mamet J, Duprat F, Noël J, Chemin J et al (2006) TREK-1, a K+ channel involved in polymodal pain perception. EMBO J 25:2368–2376. doi:10.1038/sj.emboj.7601116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Heurteaux C, Guy N, Laigle C, Blondeau N, Duprat F, Mazzuca M et al (2004) TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J 23:2684–2695. doi:10.1038/sj.emboj.7600234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Peyronnet R, Sharif-Naeini R, Folgering J, Arhatte M (2012) Mechanoprotection by polycystins against apoptosis is mediated through the opening of stretch-activated K2P channels. Cell Rep 1:241–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sanders KM, Don KS (2006) Two‐pore‐domain potassium channels in smooth muscles: new components of myogenic regulation. J Physiol 570:37–43. doi:10.1113/jphysiol.2005.098897

    Article  CAS  PubMed  Google Scholar 

  84. Kurima K, Peters LM, Yang Y, Riazuddin S, Ahmed ZM, Naz S et al (2002) Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function. Nat Genet 30:277–284. doi:10.1038/ng842

    Article  PubMed  Google Scholar 

  85. Pan B, Géléoc GS, Asai Y, Horwitz GC, Kurima K, Ishikawa K et al (2013) TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron 79:504–515. doi:10.1016/j.neuron.2013.06.019

    Article  CAS  PubMed  Google Scholar 

  86. Kurima K, Ebrahim S, Pan B, Sedlacek M, Sengupta P, Millis BA et al (2015) TMC1 and TMC2 localize at the site of mechanotransduction in mammalian inner ear hair cell stereocilia. Cell Rep 12:1606–1617. doi:10.1016/j.celrep.2015.07.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Keresztes G, Mutai H, Heller S (2003) TMC and EVER genes belong to a larger novel family, the TMC gene family encoding transmembrane proteins. BMC Genomics 4:24. doi:10.1186/1471-2164-4-24

    Article  PubMed  PubMed Central  Google Scholar 

  88. Labay V, Weichert RM, Makishima T, Griffith AJ (2010) Topology of transmembrane channel-like gene 1 protein. Biochemistry 49:8592–8598. doi:10.1021/bi1004377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chatzigeorgiou M, Bang S, Hwang SW, Schafer WR (2013) tmc-1 encodes a sodium-sensitive channel required for salt chemosensation in C. elegans. Nature 494:95–99. doi:10.1038/nature11845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kawashima Y, Géléoc GSG, Kurima K, Labay V, Lelli A, Asai Y et al (2011) Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes. J Clin Invest 121:4796–4809. doi:10.1172/JCI60405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vreugde S, Erven A, Kros CJ, Marcotti W, Fuchs H, Kurima K et al (2002) Beethoven, a mouse model for dominant, progressive hearing loss DFNA36. Nat Genet 30:257–258. doi:10.1038/ng848

    Article  PubMed  Google Scholar 

  92. Beurg M, Kim KX, Fettiplace R (2014) Conductance and block of hair-cell mechanotransducer channels in transmembrane channel-like protein mutants. J Gen Physiol 144:55–69. doi:10.1038/ng848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gale JE, Marcotti W, Kennedy HJ, Kros CJ, Richardson GP (2001) FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel. J Neurosci 21:7013–7025

    CAS  PubMed  Google Scholar 

  94. Marcotti W, Van Netten SM (2005) The aminoglycoside antibiotic dihydrostreptomycin rapidly enters mouse outer hair cells through the mechano-electrical transducer channels. J Physiol 567:505–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kazmierczak P, Sakaguchi H, Tokita J (2007) Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 449(7158):87–91. Abstract

    Google Scholar 

  96. Sakaguchi H, Tokita J, Müller U, Kachar B (2009) Tip links in hair cells: molecular composition and role in hearing loss. Curr Opin Otolaryngol Head Neck Surg 17:388. doi:10.1097/MOO.0b013e3283303472

    Article  PubMed  PubMed Central  Google Scholar 

  97. Maeda R, Kindt KS, Mo W, Morgan CP, Erickson T, Zhao H et al (2014) Tip-link protein protocadherin 15 interacts with transmembrane channel-like proteins TMC1 and TMC2. Proc Natl Acad Sci U S A 111:12907–12912. doi:10.1073/pnas.1402152111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Beurg M, Xiong W, Zhao B, Müller U (2015) Subunit determination of the conductance of hair-cell mechanotransducer channels. 2015. Proc Natl Acad Sci U S A 112(5):1589–1594. doi:10.1073/pnas.1420906112

    Article  CAS  PubMed  Google Scholar 

  99. Hynes R (1987) Integrins: a family of cell surface receptors. Cell 48:549–554. doi:10.1016/0092-8674(87)90233-9

    Article  CAS  PubMed  Google Scholar 

  100. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  CAS  PubMed  Google Scholar 

  101. Plow EF, Haas TA, Zhang L, Loftus J, Smith JW (2000) Ligand binding to integrins. J Biol Chem 275:21785–21788. doi:10.1074/jbc.R000003200

    Article  CAS  PubMed  Google Scholar 

  102. Shattil SJ, Kim C, Ginsberg MH (2010) The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 11:288–300. doi:10.1038/nrm2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Campbell ID, Humphries MJ (2011) Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol 3(3):a004994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I et al (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3:466–472. doi:10.1038/35074532, Abstract

    Article  CAS  PubMed  Google Scholar 

  105. Galbraith CG, Yamada KM, Sheetz MP (2002) The relationship between force and focal complex development. J Cell Biol 159(4):695–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang N, Butler J, Ingber D (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127. doi:10.1126/science.7684161

    Article  CAS  PubMed  Google Scholar 

  107. Choquet D, Felsenfeld DP, Sheetz MP (1997) Extracellular matrix rigidity causes strengthening of integrin–cytoskeleton linkages. Cell 88(1):39–48

    Article  CAS  PubMed  Google Scholar 

  108. Meyer CJ, Alenghat FJ, Rim P, Fong JH-J, Fabry B, Ingber DE (2000) Mechanical control of cyclic AMP signalling and gene transcription through integrins. Nat Cell Biol 2:666–668. doi:10.1038/35023621, Abstract

    Article  CAS  PubMed  Google Scholar 

  109. Chen J, Fabry B, Schiffrin EL, Wang N (2001) Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells. Am J Physiol Cell Physiol 280:C1475–C1484

    CAS  PubMed  Google Scholar 

  110. Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S et al (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and rock-independent mechanism. J Cell Biol 153:1175–1186. doi:10.1083/jcb.141.2.539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lo CM, Wang HB, Dembo M, Wang Y (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79(1):144–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276(5317):1425–1428

    Article  CAS  PubMed  Google Scholar 

  113. Dike LE, Chen CS, Mrksich M, Tien J, Whitesides GM, Ingber DE (1999) Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. Dev Biol 35:441–448

    CAS  Google Scholar 

  114. Parker KK, Brock AL, Brangwynne C, Mannix RJ, Wang N, Ostuni E et al (2002) Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J 16(10):1195–1204

    Article  CAS  PubMed  Google Scholar 

  115. McHugh BJ, Buttery R, Lad Y, Banks S (2010) Integrin activation by Fam38A uses a novel mechanism of R-Ras targeting to the endoplasmic. J Cell Sci 123(1):51–61. doi:10.1242/jcs.056424

    Article  PubMed  Google Scholar 

  116. Nose A, Tsuji K, Takeichi M (1990) Localization of specificity determining sites in cadherin cell adhesion molecules. Cell 61:147–155

    Article  CAS  PubMed  Google Scholar 

  117. Shapiro L, Weis WI (2009) Structure and biochemistry of cadherins and catenins. Cold Spring Harb Perspect Biol 1:a003053. doi:10.1101/cshperspect.a003053

    Article  PubMed  PubMed Central  Google Scholar 

  118. Prakasam AK, Maruthamuthu V, Leckband DE (2006) Similarities between heterophilic and homophilic cadherin adhesion. Proc Natl Acad Sci U S A 103:15434–15439. doi:10.1073/pnas.0606701103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Leckband D, Prakasam A (2006) Mechanism and dynamics of cadherin adhesion. Annu Rev Biomed Eng 8:259–287. doi:10.1146/annurev.bioeng.8.061505.095753

    Article  CAS  PubMed  Google Scholar 

  120. Shi Q, Maruthamuthu V, Li F, Leckband D (2010) Allosteric cross talk between cadherin extracellular domains. Biophys J 99:95–104. doi:10.1016/j.bpj.2010.03.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Desai R, Sarpal R, Ishiyama N, Pellikka M, Ikura M, Tepass U (2013) Monomeric α-catenin links cadherin to the actin cytoskeleton. Nature 15:261–273. doi:10.1038/ncb2685

    CAS  Google Scholar 

  122. le Duc Q, Shi Q, Blonk I, Sonnenberg A, Wang N, Leckband D et al (2010) Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J Cell Biol 189:1107–1115. doi:10.1083/jcb.201001149

    Article  PubMed  PubMed Central  Google Scholar 

  123. Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M (2010) alpha-Catenin as a tension transducer that induces adherens junction development. Nature 12:533–542. doi:10.1038/ncb2055

    CAS  Google Scholar 

  124. Yonemura S (2011) A mechanism of mechanotransduction at the cell-cell interface: emergence of α-catenin as the center of a force-balancing mechanism for morphogenesis in multicellular organisms. Bioessays 33:732–736. doi:10.1002/bies.201100064

    Article  CAS  PubMed  Google Scholar 

  125. Leckband DE, de Rooij J (2014) Cadherin adhesion and mechanotransduction. Annu Rev Cell Dev Biol 30:291–315. doi:10.1146/annurev-cellbio-100913-013212

    Article  CAS  PubMed  Google Scholar 

  126. Saez A, Buguin A, Silberzan P, Ladoux B (2005) Is the mechanical activity of epithelial cells controlled by deformations or forces? Biophys J 89:L52–L54. doi:10.1529/biophysj.105.071217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Liu Q-S, Zhang J, Liu M, Dong W-G (2010) Lentiviral-mediated miRNA against liver-intestine cadherin suppresses tumor growth and invasiveness of human gastric cancer. Cancer Sci 101:1807–1812. doi:10.1111/j.1349-7006.2010.01600.x

    Article  PubMed  CAS  Google Scholar 

  128. Barry AK, Wang N, Leckband DE (2015) Local VE-cadherin mechanotransduction triggers long-ranged remodeling of endothelial monolayers. J Cell Sci 128:1341–1351. doi:10.1242/jcs.159954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Roh-Johnson M, Shemer G, Higgins CD, McClellan JH, Werts AD, Tulu US et al (2012) Triggering a cell shape change by exploiting preexisting actomyosin contractions. Science 335:1232–1235. doi:10.1126/science.1217869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Levayer R, Lecuit T (2013) Oscillation and polarity of E-cadherin asymmetries control actomyosin flow patterns during morphogenesis. Dev Cell 26:162–175. doi:10.1016/j.devcel.2013.06.020

    Article  CAS  PubMed  Google Scholar 

  131. Tabdili H, Langer M, Shi Q, Poh Y-C, Wang N, Leckband D (2012) Cadherin-dependent mechanotransduction depends on ligand identity but not affinity. J Cell Sci 125:4362–4371. doi:10.1242/jcs.105775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ladoux B, Anon E, Lambert M, Rabodzey A, Hersen P, Buguin A et al (2010) Strength dependence of cadherin-mediated adhesions. Biophys J 98:534–542. doi:10.1016/j.bpj.2009.10.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dufour S, Mège R-M, Thiery JP (2014) α-Catenin, vinculin, and F-actin in strengthening E-cadherin cell–cell adhesions and mechanosensing. Cell Adh Migr 7:345–350. doi:10.4161/cam.25139

    Article  Google Scholar 

  134. Thomas WA, Boscher C, Chu Y-S, Cuvelier D, Martinez-Rico C, Seddiki R et al (2013) α-Catenin and vinculin cooperate to promote high E-cadherin-based adhesion strength. J Biol Chem 288:4957–4969. doi:10.1074/jbc.M112.403774

    Article  CAS  PubMed  Google Scholar 

  135. Lecuit T, Lenne P-F, Munro E (2010) Force generation, transmission, and integration during cell and tissue morphogenesis. Annu Rev Cell Dev Biol 27:157–184. doi:10.1146/annurev-cellbio-100109-104027

    Article  CAS  Google Scholar 

  136. Maître J-L, Heisenberg C-P (2013) Three functions of cadherins in cell adhesion. Curr Biol 23:R626–R633. doi:10.1016/j.cub.2013.06.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Andreeva AV, Han J, Kutuzov MA, Profirovic J, Tkachuk VA, Voyno-Yasenetskaya TA (2010) T-cadherin modulates endothelial barrier function. J Cell Physiol 223:94–102. doi:10.1002/jcp.22014

    CAS  PubMed  Google Scholar 

  138. Groschwitz KR, Hogan SP (2009) Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 124:3–20. doi:10.1016/j.jaci.2009.05.038, quiz 21–2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gumbiner BM (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6:622–634. doi:10.1038/nrm1699

    Article  CAS  PubMed  Google Scholar 

  140. Bockaert J, Pin JP (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J 18:1723–1729. doi:10.1093/emboj/18.7.1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Schnitzler MY, Storch U, Gudermann T (2011) AT1 receptors as mechanosensors. Curr Opin Pharmacol 11:112–116

    Article  CAS  Google Scholar 

  142. Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T et al (2004) Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 6:499–506. doi:10.1038/ncb1137

    Article  CAS  PubMed  Google Scholar 

  143. Jarajapu YPR, Knot HJ (2002) Role of phospholipase C in development of myogenic tone in rat posterior cerebral arteries. Am J Physiol Heart Circ Physiol 283:H2234–H2238. doi:10.1152/ajpheart.00624.2002

    Article  CAS  PubMed  Google Scholar 

  144. Osol G, Laher I, Kelley M (1993) Myogenic tone is coupled to phospholipase C and G protein activation in small cerebral arteries. Am J Physiol Heart Circ Physiol 265:H415–H420

    CAS  Google Scholar 

  145. Farrens DL, Altenbach C, Yang K, Hubbell WL (1996) Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274(5288):768–770

    Article  CAS  PubMed  Google Scholar 

  146. Karnik S, Gogonea C, Patil S, Saad Y, Takezako T (2003) Activation of G-protein-coupled receptors: a common molecular mechanism. Trends Endocrinol Metab 14:431–437. doi:10.1016/j.tem.2003.09.007

    Article  CAS  PubMed  Google Scholar 

  147. Yasuda N, Miura S-I, Akazawa H, Tanaka T, Qin Y, Kiya Y et al (2008) Conformational switch of angiotensin II type 1 receptor underlying mechanical stress-induced activation. EMBO Rep 9:179–186. doi:10.1038/sj.embor.7401157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Storch U, Mederos y Schnitzler M, Gudermann T (2012) G protein-mediated stretch reception. Am J Physiol Heart Circ Physiol 302:H1241–H1249. doi:10.1152/ajpheart.00818.2011

    Article  CAS  PubMed  Google Scholar 

  149. Chachisvilis M, Zhang Y-L, Frangos JA (2006) G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci U S A 103:15463–15468. doi:10.1073/pnas.0607224103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Mannstadt M, Jüppner H, Gardella TJ (1999) Receptors for PTH and PTHrP: their biological importance and functional properties. Am J Physiol 277:F665–F675

    CAS  PubMed  Google Scholar 

  151. Zhang Y-L, Frangos JA, Chachisvilis M (2009) Mechanical stimulus alters conformation of type 1 parathyroid hormone receptor in bone cells. Am J Physiol Cell Physiol 296:C1391–C1399. doi:10.1152/ajpcell.00549.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Abdul-Majeed S, Nauli SM (2011) Dopamine receptor type 5 in the primary cilia has dual chemo- and mechano-sensory roles. Hypertension 58:325–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Makino A, Prossnitz ER, Bunemann M, Wang JM, Yao WJ, Schmid-Schoenbein GW (2006) G protein-coupled receptors serve as mechanosensors for fluid shear stress in neutrophils. Am J Physiol Cell Physiol 290:C1633–C1639. doi:10.1152/ajpcell.00576.2005

    Article  CAS  PubMed  Google Scholar 

  154. Langenhan T, Aust G, Hamann J (2013) Sticky signaling-adhesion class G protein-coupled receptors take the stage. Sci Signal 6:re3. doi:10.1126/scisignal.2003825

    Article  PubMed  CAS  Google Scholar 

  155. Petersen SC, Luo R, Liebscher I, Giera S, Jeong S-J, Mogha A et al (2015) The adhesion GPCR GPR126 has distinct, domain-dependent functions in Schwann cell development mediated by interaction with laminin-211. Neuron 85:755–769. doi:10.1016/j.neuron.2014.12.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. White JP, Wrann CD, Rao RR, Nair SK, Jedrychowski MP, You JS et al (2014) G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1417898111

    Google Scholar 

  157. Liebscher I, Schöneberg T (2016) Tethered agonism: a common activation mechanism of adhesion GPCRs. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  158. Kishore A, Hall RA (2016) Versatile signaling activity of adhesion GPCRs. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  159. Araç D, Sträter N, Seiradake E (2016) Understanding the structural basis of adhesion GPCR functions. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  160. Lin H-H, Chang G-W, Davies JQ, Stacey M, Harris J, Gordon S (2004) Autocatalytic cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site motif. J Biol Chem 279:31823–31832. doi:10.1074/jbc.M402974200

    Article  CAS  PubMed  Google Scholar 

  161. Krasnoperov VG, Bittner MA, Beavis R, Kuang YN, Salnikow KV, Chepurny OG et al (1997) alpha-Latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor. Neuron 18:925–937. doi:10.1016/S0896-6273(00)80332-3

    Article  CAS  PubMed  Google Scholar 

  162. Araç D, Boucard AA, Bolliger MF, Nguyen J, Soltis SM, Südhof TC et al (2012) A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. EMBO J 31:1364–1378. doi:10.1038/emboj.2012.26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Liebscher I, Schön J, Petersen SC, Fischer L, Auerbach N, Demberg LM et al (2014) A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133. Cell Rep 9:2018–2026. doi:10.1016/j.celrep.2014.11.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Stoveken HM, Hajduczok AG, Xu L, Tall GG (2015) Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1421785112

    PubMed  PubMed Central  Google Scholar 

  165. Demberg LM, Rothemund S, Schöneberg T, Liebscher I (2015) Identification of the tethered peptide agonist of the adhesion G protein-coupled receptor GPR64/ADGRG2. Biochem Biophys Res Commun 464:743–747. doi:10.1016/j.bbrc.2015.07.020

    Article  CAS  PubMed  Google Scholar 

  166. Wilde C, Fischer L, Lede V, Kirchberger J, Rothemund S, Schöneberg T et al (2015) The constitutive activity of the adhesion GPCR GPR114/ADGRG5 is mediated by its tethered agonist. FASEB J. doi:10.1096/fj.15-276220

    PubMed Central  Google Scholar 

  167. Sigoillot SM, Monk KR, Piao X, Selimi F, Harty BL (2016) Adhesion G protein-coupled receptors in the nervous system: from synapse and dendrite morphogenesis to myelination. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  168. Monk KR, Naylor SG, Glenn TD, Mercurio S, Perlin JR, Dominguez C et al (2009) A G protein-coupled receptor is essential for Schwann cells to initiate myelination. Science 325:1402–1405. doi:10.1126/science.1173474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Monk KR, Oshima K, Jörs S, Heller S, Talbot WS (2011) Gpr126 is essential for peripheral nerve development and myelination in mammals. Development 138:2673–2680. doi:10.1242/dev.062224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Glenn TD, Talbot WS (2013) Analysis of Gpr126 function defines distinct mechanisms controlling the initiation and maturation of myelin. Development 140:3167–3175. doi:10.1242/dev.093401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Mogha A, Benesh AE, Patra C, Engel FB, Schöneberg T, Liebscher I et al (2013) Gpr126 functions in Schwann cells to control differentiation and myelination via G-protein activation. J Neurosci 33:17976–17985. doi:10.1523/JNEUROSCI.1809-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Feltri ML, Wrabetz L (2005) Laminins and their receptors in Schwann cells and hereditary neuropathies. J Peripher Nerv Syst 10:128–143. doi:10.1111/j.1085-9489.2005.0010204.x

    Article  CAS  PubMed  Google Scholar 

  173. Monk KR, Feltri ML, Taveggia C (2015) New insights on Schwann cell development. Glia 63:1376–1393. doi:10.1002/glia.22852

    Article  PubMed  PubMed Central  Google Scholar 

  174. Colognato H, Yurchenco PD (1999) The laminin alpha2 expressed by dystrophic dy(2J) mice is defective in its ability to form polymers. Curr Biol 9:1327–1330

    Article  CAS  PubMed  Google Scholar 

  175. Yang D (2005) Coordinate control of axon defasciculation and myelination by laminin-2 and -8. J Cell Biol 168:655–666. doi:10.1083/jcb.200411158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Xu H, Christmas P, Wu XR, Wewer UM, Engvall E (1994) Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse. Proc Natl Acad Sci U S A 91:5572–5576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Eberl DF (1999) Feeling the vibes: chordotonal mechanisms in insect hearing. Curr Opin Neurobiol 9:389–393. doi:10.1016/S0959-4388(99)80058-0

    Article  CAS  PubMed  Google Scholar 

  178. White JP (2016) Control of skeletal muscle cell growth and size through adhesion GPCRs. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  179. Budday S, Steinmann P, Kuhl E (2015) Physical biology of human brain development. Front Cell Neurosci 9:257. doi:10.3389/fncel.2015.00257

    Article  PubMed  PubMed Central  Google Scholar 

  180. Peng Y-M, van de Garde MDB, Cheng K-F, Baars PA, Remmerswaal EBM, van Lier RAW et al (2011) Specific expression of GPR56 by human cytotoxic lymphocytes. J Leukoc Biol 90:735–740. doi:10.1189/jlb.0211092

    Article  CAS  PubMed  Google Scholar 

  181. Boyden SE, Desai MS, Cruse G, Young ML, Bolan HC, Scott LM et al (2016) Vibratory urticaria associated with a missense variant in ADGRE2. N Engl J Med 374(7):656–663. doi:10.1056/NEJMoa1500611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Bridges JP, Ludwig M-G, Mueller M, Kinzel B, Sato A, Xu Y et al (2013) Orphan G protein-coupled receptor GPR116 regulates pulmonary surfactant pool size. Am J Respir Cell Mol Biol 49:348–357. doi:10.1165/rcmb.2012-0439OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Yang MY, Hilton MB, Seaman S, Haines DC, Nagashima K, Burks CM et al (2013) Essential regulation of lung surfactant homeostasis by the orphan G protein-coupled receptor GPR116. Cell Rep 3:1457–1464. doi:10.1016/j.celrep.2013.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Fukuzawa T, Ishida J, Kato A, Ichinose T, Ariestanti DM, Takahashi T et al (2013) Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D. PLoS One 8:e69451. doi:10.1371/journal.pone.0069451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ludwig M-G, Seuwen K, Bridges JP (2016) Adhesion GPCR function in pulmonary development and disease. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  186. McMillan DR, Kayes-Wandover KM, Richardson JA, White PC (2002) Very large G protein-coupled receptor-1, the largest known cell surface protein, is highly expressed in the developing central nervous system. J Biol Chem 277:785–792. doi:10.1074/jbc.M108929200

    Article  CAS  PubMed  Google Scholar 

  187. McGee J, Goodyear RJ, McMillan DR, Stauffer EA, Holt JR, Locke KG et al (2006) The very large G-protein-coupled receptor VLGR1: a component of the ankle link complex required for the normal development of auditory hair bundles. J Neurosci 26:6543–6553. doi:10.1523/JNEUROSCI.0693-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The writing of this manuscript was supported by grants from the Deutsche Forschungsgemeinschaft to R. J. K. and T. L. (Research Unit FOR 2149, Projects P1 [LA 2861/4-1] and P3 [LA 2861/5-1, KI 1460/2-1]; SFB 1047, Project A5; SFB-TR 166 Projects B4 and C3; LA 2861/7-1). K. R. M. acknowledges support from the NIH (R01 NS079445, R01 HD080601).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicole Scholz or Tobias Langenhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Scholz, N., Monk, K.R., Kittel, R.J., Langenhan, T. (2016). Adhesion GPCRs as a Putative Class of Metabotropic Mechanosensors. In: Langenhan, T., Schöneberg, T. (eds) Adhesion G Protein-coupled Receptors. Handbook of Experimental Pharmacology, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-319-41523-9_10

Download citation

Publish with us

Policies and ethics