Skip to main content

Switched-Capacitor Power-Converter Topology Overview and Performance Comparison

  • Chapter
  • First Online:
Wideband Continuous-time ΣΔ ADCs, Automotive Electronics, and Power Management

Abstract

Switched-capacitor power converters are interesting candidates to realize integrated power converters with acceptable power efficiencies. Depending on the input and output voltage ranges to be accommodated at a desired efficiency, certain voltage conversion ratio(s) need(s) to be implemented. Though the theoretical minimum number of floating capacitors to realize a desired voltage conversion ratio is known, how to actually synthesize the corresponding topologies and what impact these topologies have on circuit performance is less trivial. Besides two-clock-phase topologies, multiple-clock-phase topologies have recently been introduced. This paper gives an overview of various methods to implement desired voltage conversion ratios with two or multiple clock phases and compares their performance under given boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.J. Bergveld, M. Rose, Integration trends in monolithic power ICs: application and technology challenges, in Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), 2015, pp. 13–19

    Google Scholar 

  2. G. Villar Piqué, Embedded voltage regulation and energy management for IoT/IoE, in Proceedings of the IEEE International Solid-State Circuits Conference Forum (ISSCC Forum), Feb 26, 2015

    Google Scholar 

  3. G. Villar Piqué, H.J. Bergveld, E. Alarcon, Survey and benchmark of fully integrated switching power converters: switched-capacitor versus inductive approach. IEEE Trans. Power Electron. 28(9), 4156–4167 (2013)

    Article  Google Scholar 

  4. R.W. Erickson, D. Maksimovic, Fundamentals of Power Electronics (Springer Science & Business Media, 2001)

    Google Scholar 

  5. V. De, Energy efficient computing in nanoscale CMOS: challenges and opportunities, in Proceedings of the IEEE Asian Solid-State Circuits Conference (A-SSCC), 2014, pp. 121–124

    Google Scholar 

  6. J. Wibben, R. Harjani, A high-efficiency DC–DC converter using 2 nH integrated inductors. IEEE J. Solid-State Circuits 43(4), 844–854 (2008)

    Article  Google Scholar 

  7. M. Wens, M. Steyaert, A fully integrated CMOS 800 mW four-phase semiconstant ON/OFF-time step-down converter. IEEE Trans. Power Electron. 26(2), 326–333 (2011)

    Article  Google Scholar 

  8. D.S. Gardner, G. Schrom, F. Paillet, B. Jamieson, T. Karnik, S. Borkar, Review of on-chip inductor structures with magnetic films. IEEE Trans. Magn. 45(10), 4760–4766 (2009)

    Article  Google Scholar 

  9. C. Huang, P.K. Mok, A 100 MHz 82.4% efficiency package-bondwire based four-phase fully-integrated buck converter with floating capacitor for area reduction. IEEE J. Solid-State Circuits 48(12), 2977–2988 (2013)

    Article  Google Scholar 

  10. E.A. Burton, G. Schrom, F. Paillet, J. Douglas, W.J. Lambert, K. Radhakrishnan, M.J. Hill, FIVR—fully integrated voltage regulators on 4th generation Intel® Core™ SoCs, in Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), 2014, pp. 432–439

    Google Scholar 

  11. H.J. Bergveld, K. Nowak, R. Karadi, S. Iochem, J. Ferreira, S. Ledain, E. Pieraerts, M. Pommier, A 65 nm-CMOS 100 MHz 87% efficient DC-DC down converter based on dual-die system-in-package integration, in Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), 2009, pp. 3698–3705

    Google Scholar 

  12. G. Villar Piqué, Potential benefits of integrated switching power converters: inductive vs. switched-capacitor, in International Workshop on Power Supply on Chip (PowerSoc), 2012

    Google Scholar 

  13. G. Villar Piqué, H.J. Bergveld, R. Karadi, A 1 W 8-ratio switched-capacitor boost power converter in 140 nm CMOS with 94.5% efficiency, 0.5 mm thickness and 8.1 mm2 PCB area, in Proceedings of the IEEE Symposium on VLSI Circuits (VLSIC), 2015, pp. 338–339

    Google Scholar 

  14. Paul, D. Jiao, S. Sapatnekar, C.H. Kim, Deep trench capacitor based step-up and step-down DC/DC converters in 32 nm SOI with opportunistic current borrowing and fast DVFS capabilities, in Proceedings of the IEEE Asian Solid-State Circuits Conference (A-SSCC), 2013, pp. 49–52

    Google Scholar 

  15. G. Villar Piqué, E. Alarcon, CMOS Integrated Switching Power Converters: A Structured Design Approach (Springer, 2011)

    Google Scholar 

  16. W. Kim, D. Brooks, G. Wei, A fully integrated 3-level DC-DC converter for nanosecond-scale DVFS. IEEE J. Solid-State Circuits 47(1), 206–219 (2012)

    Article  Google Scholar 

  17. C. Schaef, J. Stauth, A 3-phase resonant switched capacitor converter delivering 7.7 W at 85% efficiency using 1.1 nH PCB trace inductors. IEEE J. Solid-State Circuits 50(12), 2861–2869 (2015)

    Article  Google Scholar 

  18. M.D. Seeman, S.R. Sanders, Analysis and optimization of switched-capacitor DC-DC converters. IEEE Trans. Power Electron. 23(2), 841–851 (2008)

    Article  Google Scholar 

  19. Y. Li, J. Jiang, W. Ki, C. Yue, S. Sin, U. Seng-Pan, R. Martins, A 123-phase DC-DC converter ring with fast DVS for microprocessors, in Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC), 2015, pp. 364–365

    Google Scholar 

  20. M. Makowski, D. Maksimovic, Performance limits of switched-capacitor DC-DC converters, in Proceedings of the IEEE Power Electronics Specialists Conference (PESC), 1995, pp. 1215–1221

    Google Scholar 

  21. T. Van Breussegem, Monolithic capacitive CMOS DC-DC converters. Ph.D. Thesis, Katholieke Universiteit Leuven, 2012

    Google Scholar 

  22. J. Tsai, S. Ko, C. Wang, Y. Yen, H. Wang, P. Huang, P. Lan, M. Shen, A 1 V input, 3 V-to-6 V output, 58%-efficient integrated charge pump with a hybrid topology for area reduction and an improved efficiency by using parasitics. IEEE J. Solid-State Circuits 50(11), 2533–2548 (2015)

    Article  Google Scholar 

  23. H. Meyvaert, G. Villar Piqué, R. Karadi, H.J. Bergveld, M. Steyaert, A light-load-efficient 11/1 switched-capacitor DC-DC converter with 94.7% efficiency while delivering 100 mW at 3.3 V. IEEE J. Solid-State Circuits 50(12), 2849–2860 (2015)

    Article  Google Scholar 

  24. L. Salem, P. Mercier, A recursive switched-capacitor DC-DC converter achieving 2N-1 ratios with high efficiency over a wide output voltage range. IEEE J. Solid-State Circuits 49(12), 2773–2787 (2014)

    Article  Google Scholar 

  25. R. Karadi, Synthesis of switched-capacitor power converters: an iterative algorithm, in Proceedings of the IEEE Workshop on Control and Modeling for Power Electronics (COMPEL), 2015, pp. 1–4

    Google Scholar 

  26. R. Karadi, G. Villar Piqué, 3-phase 6/1 switched-capacitor DC-DC boost converter providing 16 V at 7 mA and 70.3% efficiency in 1.1 mm3, in Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC), 2014, pp. 92–93

    Google Scholar 

  27. L. Salem, P. Mercier, A battery-connected 24-ratio switched capacitor PMIC achieving 95.5%-efficiency, in Proceedings of the IEEE Symposium on VLSI Circuits (VLSIC), 2015, pp. 340–341

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Karadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Karadi, R., Piqué, G.V., Bergveld, H.J. (2017). Switched-Capacitor Power-Converter Topology Overview and Performance Comparison. In: Baschirotto, A., Harpe, P., Makinwa, K. (eds) Wideband Continuous-time ΣΔ ADCs, Automotive Electronics, and Power Management. Springer, Cham. https://doi.org/10.1007/978-3-319-41670-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41670-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41669-4

  • Online ISBN: 978-3-319-41670-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics