Skip to main content

Nanowire Interfaces to Cells and Tissue

  • Chapter
  • First Online:
Nanowires

Part of the book series: NanoScience and Technology ((NANO))

Abstract

The interface between nanosystems and biosystems is emerging as one of the broadest and most dynamic areas of science and technology, bringing together biology, chemistry, physics and many areas of engineering, biotechnology and medicine. The combination of these diverse areas of research promises to yield revolutionary advances in healthcare, medicine and the life science through, for example, the creation of new and powerful tools that enable direct, sensitive and rapid analysis of biological species and cellular activities. Research at the interface between nanomaterials and biology could yield breakthroughs in fundamental science and lead to revolutionary technologies. In this chapter, we will introduce studies focused on building the interface of NWs to cells and tissues, including extracellular and intracellular signal recording, synthetic cyborg tissues and in vivo recording.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.A. Kotov, J.O. Winter, I.P. Clements, E. Jan, B.P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C.M. Lieber, M. Prato, Nanomaterials for neural interfaces. Adv. Mater. 21(40), 3970–4004 (2009)

    Article  Google Scholar 

  2. A. Zhang, C.M. Lieber, Nano-bioelectronics. Chem. Rev. 116(1), 215–257 (2016)

    Article  Google Scholar 

  3. K. Jain, Nanobiotechnology-based drug delivery to the central nervous system. Neurodegener. Dis. 4(4), 287–291 (2007)

    Article  Google Scholar 

  4. S.J. Luck, in An Introduction to the Event-Related Potential Technique (MIT Press, Cambridge, 2014)

    Google Scholar 

  5. M. Guye, G. Bettus, F. Bartolomei, P.J. Cozzone, Graph theoretical analysis of structural and functional connectivity MRI in normal and pathological brain networks. Magn. Reson. Mater. Phys. Biol. Med. 23(5–6), 409–421 (2010)

    Article  Google Scholar 

  6. N.K. Logothetis, What we can do and what we cannot do with fMRI. Nature 453(7197), 869–878 (2008)

    Article  ADS  Google Scholar 

  7. G. Buzsáki, C.A. Anastassiou, C. Koch, The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13(6), 407–420 (2012)

    Article  Google Scholar 

  8. M.S. Siegel, E.Y. Isacoff, A genetically encoded optical probe of membrane voltage. Neuron 19(4), 735–741 (1997)

    Article  Google Scholar 

  9. C. Stosiek, O. Garaschuk, K. Holthoff, A. Konnerth, In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100(12), 7319–7324 (2003)

    Article  ADS  Google Scholar 

  10. W. Mittmann, D.J. Wallace, U. Czubayko, J.T. Herb, A.T. Schaefer, L.L. Looger, W. Denk, J.N. Kerr, Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo. Nat. Neurosci. 14(8), 1089–1093 (2011)

    Article  Google Scholar 

  11. M. Scanziani, M. Häusser, Electrophysiology in the age of light. Nature 461(7266), 930–939 (2009)

    Article  ADS  Google Scholar 

  12. M.R. Warden, J.A. Cardin, K. Deisseroth, Optical neural interfaces. Annu. Rev. Biomed. Eng. 16, 103 (2014)

    Article  Google Scholar 

  13. J.M. Kralj, A.D. Douglass, D.R. Hochbaum, D. Maclaurin, A.E. Cohen, Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat. Methods 9(1), 90–95 (2012)

    Article  Google Scholar 

  14. G.A. Silva, Neuroscience nanotechnology: progress, opportunities and challenges. Nat. Rev. Neurosci. 7(1), 65–74 (2006)

    Article  Google Scholar 

  15. A.P. Alivisatos, M. Chun, G.M. Church, R.J. Greenspan, M.L. Roukes, R. Yuste, The brain activity map project and the challenge of functional connectomics. Neuron 74(6), 970–974 (2012)

    Article  Google Scholar 

  16. A.P. Alivisatos, A.M. Andrews, E.S. Boyden, M. Chun, G.M. Church, K. Deisseroth, J.P. Donoghue, S.E. Fraser, J. Lippincott-Schwartz, L.L. Looger, Nanotools for neuroscience and brain activity mapping. ACS Nano 7(3), 1850–1866 (2013)

    Article  Google Scholar 

  17. M.R. Angle, B. Cui, N.A. Melosh, Nanotechnology and neurophysiology. Curr. Opin. Neurobiol. 32, 132–140 (2015)

    Article  Google Scholar 

  18. C. Thomas, P. Springer, G. Loeb, Y. Berwald-Netter, L. Okun, A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp. Cell Res. 74(1), 61–66 (1972)

    Article  Google Scholar 

  19. A.F. Johnstone, G.W. Gross, D.G. Weiss, O.H.-U. Schroeder, A. Gramowski, T.J. Shafer, Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology 31(4), 331–350 (2010)

    Article  Google Scholar 

  20. L. Berdondini, K. Imfeld, A. Maccione, M. Tedesco, S. Neukom, M. Koudelka-Hep, S. Martinoia, Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9(18), 2644–2651 (2009)

    Article  Google Scholar 

  21. Y. Nam, B.C. Wheeler, In vitro microelectrode array technology and neural recordings. Crit. Rev. Biomed. Eng. 39(1) (2011)

    Google Scholar 

  22. R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, Single-cell recording and stimulation with a 16 k micro-nail electrode array integrated on a 0.18 μm CMOS chip. Lab Chip 12(7), 1274–1280 (2012)

    Article  Google Scholar 

  23. L.R. Hochberg, M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner, D. Chen, R.D. Penn, J.P. Donoghue, Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099), 164–171 (2006)

    Article  ADS  Google Scholar 

  24. A. Berényi, Z. Somogyvari, A.J. Nagy, L. Roux, J.D. Long, S. Fujisawa, E. Stark, A. Leonardo, T.D. Harris, G. Buzsáki, Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals. J. Neurophysiol. 111(5), 1132–1149 (2014)

    Article  Google Scholar 

  25. G.W. Gross, B.K. Rhoades, D.L. Reust, F.U. Schwalm, Stimulation of monolayer networks in culture through thin-film indium-tin oxide recording electrodes. J. Neurosci. Methods 50(2), 131–143 (1993)

    Article  Google Scholar 

  26. M.E. Spira, A. Hai, Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotechnol. 8(2), 83–94 (2013)

    Article  ADS  Google Scholar 

  27. M.J. Nelson, P. Pouget, E.A. Nilsen, C.D. Patten, J.D. Schall, Review of signal distortion through metal microelectrode recording circuits and filters. J. Neurosci. Methods 169(1), 141–157 (2008)

    Article  Google Scholar 

  28. J. Pine, Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J. Neurosci. Methods 2(1), 19–31 (1980)

    Article  Google Scholar 

  29. J.-H. Kim, G. Kang, Y. Nam, Y.-K. Choi, Surface-modified microelectrode array with flake nanostructure for neural recording and stimulation. Nanotechnology 21(8), 085303 (2010)

    Article  ADS  Google Scholar 

  30. E.W. Keefer, B.R. Botterman, M.I. Romero, A.F. Rossi, G.W. Gross, Carbon nanotube coating improves neuronal recordings. Nat. Nanotechnol. 3(7), 434–439 (2008)

    Article  Google Scholar 

  31. L. Bareket-Keren, Y. Hanein, Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects. Front. Neural Circuits 6, 122 (2012)

    Google Scholar 

  32. P. Fromherz, A. Offenhausser, T. Vetter, J. Weis, A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor. Science 252(5010), 1290–1293 (1991)

    Article  ADS  Google Scholar 

  33. M. Voelker, P. Fromherz, Signal transmission from individual mammalian nerve cell to field-effect transistor. Small 1(2), 206–210 (2005)

    Article  Google Scholar 

  34. G. Wrobel, M. Höller, S. Ingebrandt, S. Dieluweit, F. Sommerhage, H.P. Bochem, A. Offenhäusser, Transmission electron microscopy study of the cell–sensor interface. J. R. Soc. Interface 5(19), 213–222 (2008)

    Article  Google Scholar 

  35. F. Santoro, S. Dasgupta, J. Schnitker, T. Auth, E. Neumann, G. Panaitov, G. Gompper, A. Offenhäusser, Interfacing electrogenic cells with 3D nanoelectrodes: position, shape, and size matter. ACS Nano 8(7), 6713–6723 (2014)

    Article  Google Scholar 

  36. K. Toma, H. Kano, A. Offenhäusser, Label-free measurement of cell-electrode cleft gap distance with high spatial resolution surface plasmon microscopy. ACS Nano 8(12), 12612–12619 (2014)

    Article  Google Scholar 

  37. J. Van Pelt, P.S. Wolters, M. Corner, W.L. Rutten, G.J. Ramakers, Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks. IEEE Trans. Biomed. Eng. 51(11), 2051–2062 (2004)

    Article  Google Scholar 

  38. S. Morefield, E. Keefer, K. Chapman, G. Gross, Drug evaluations using neuronal networks cultured on microelectrode arrays. Biosens. Bioelectron. 15(7), 383–396 (2000)

    Article  Google Scholar 

  39. M.E. Ruaro, P. Bonifazi, V. Torre, Toward the neurocomputer: image processing and pattern recognition with neuronal cultures. IEEE Trans. Biomed. Eng. 52(3), 371–383 (2005)

    Article  Google Scholar 

  40. H. Craighead, S. Turner, R. Davis, C. James, A. Perez, P.S. John, M. Isaacson, L. Kam, W. Shain, J. Turner, Chemical and topographical surface modification for control of central nervous system cell adhesion. Biomed. Microdevices 1(1), 49–64 (1998)

    Article  Google Scholar 

  41. H. Craighead, C. James, A. Turner, Chemical and topographical patterning for directed cell attachment. Curr. Opin. Solid State Mater. Sci. 5(2), 177–184 (2001)

    Article  ADS  Google Scholar 

  42. A. Hai, J. Shappir, M.E. Spira, Long-term, multisite, parallel, in-cell recording and stimulation by an array of extracellular microelectrodes. J. Neurophysiol. 104(1), 559–568 (2010)

    Article  Google Scholar 

  43. F. Patolsky, B.P. Timko, G. Yu, Y. Fang, A.B. Greytak, G. Zheng, C.M. Lieber, Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313(5790), 1100–1104 (2006)

    Article  ADS  Google Scholar 

  44. T.-S. Pui, A. Agarwal, F. Ye, N. Balasubramanian, P. Chen, CMOS-compatible nanowire sensor arrays for detection of cellular bioelectricity. Small 5(2), 208–212 (2009)

    Article  Google Scholar 

  45. T. Cohen-Karni, B.P. Timko, L.E. Weiss, C.M. Lieber, Flexible electrical recording from cells using nanowire transistor arrays. Proc. Natl. Acad. Sci. USA 106(18), 7309–7313 (2009)

    Article  ADS  Google Scholar 

  46. B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie, C.M. Lieber, Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329(5993), 830–834 (2010)

    Article  ADS  Google Scholar 

  47. Q. Qing, S.K. Pal, B. Tian, X. Duan, B.P. Timko, T. Cohen-Karni, V.N. Murthy, C.M. Lieber, Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc. Natl. Acad. Sci. USA 107(5), 1882–1887 (2010)

    Article  ADS  Google Scholar 

  48. J.F. Eschermann, R. Stockmann, M. Hueske, X.T. Vu, S. Ingebrandt, A. Offenhäusser, Action potentials of HL-1 cells recorded with silicon nanowire transistors. Appl. Phys. Lett. 95(8), 083703 (2009)

    Article  ADS  Google Scholar 

  49. T. Cohen-Karni, D. Casanova, J.F. Cahoon, Q. Qing, D.C. Bell, C.M. Lieber, Synthetically encoded ultrashort-channel nanowire transistors for fast, pointlike cellular signal detection. Nano Lett. 12(5), 2639–2644 (2012)

    Article  ADS  Google Scholar 

  50. M. Dankerl, S. Eick, B. Hofmann, M. Hauf, S. Ingebrandt, A. Offenhäusser, M. Stutzmann, J.A. Garrido, Diamond transistor array for extracellular recording from electrogenic cells. Adv. Funct. Mater. 19(18), 2915–2923 (2009)

    Article  Google Scholar 

  51. C. Van Renterghem, G. Romey, M. Lazdunski, Vasopressin modulates the spontaneous electrical activity in aortic cells (line A7r5) by acting on three different types of ionic channels. Proc. Natl. Acad. Sci. USA 85(23), 9365–9369 (1988)

    Article  ADS  Google Scholar 

  52. L.I. Brueggemann, C.J. Moran, J.A. Barakat, J.Z. Yeh, L.L. Cribbs, K.L. Byron, Vasopressin stimulates action potential firing by protein kinase C-dependent inhibition of KCNQ5 in A7r5 rat aortic smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 292(3), H1352–H1363 (2007)

    Article  Google Scholar 

  53. E. Chorev, J. Epsztein, A.R. Houweling, A.K. Lee, M. Brecht, Electrophysiological recordings from behaving animals—going beyond spikes. Curr. Opin. Neurobiol. 19(5), 513–519 (2009)

    Article  Google Scholar 

  54. A.L. Hodgkin, A.F. Huxley, Action potentials recorded from inside a nerve fibre. Nature 144(3651), 710–711 (1939)

    Article  ADS  Google Scholar 

  55. A. Molleman, Patch clamping: an introductory guide to patch clamp electrophysiology (Wiley, Chichester, 2003)

    Google Scholar 

  56. B. Tian, C.M. Lieber, Design, synthesis, and characterization of novel nanowire structures for photovoltaics and intracellular probes. Pure Appl. Chem. 83(12), 2153 (2011)

    Article  Google Scholar 

  57. B. Tian, C.M. Lieber, Synthetic nanoelectronic probes for biological cells and tissues. Annu. Rev. Anal. Chem. 6, 31–51 (2013)

    Article  Google Scholar 

  58. X. Duan, T.-M. Fu, J. Liu, C.M. Lieber, Nanoelectronics-biology frontier: from nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues. Nano Today 8(4), 351–373 (2013)

    Article  Google Scholar 

  59. A. Hai, A. Dormann, J. Shappir, S. Yitzchaik, C. Bartic, G. Borghs, J. Langedijk, M.E. Spira, Spine-shaped gold protrusions improve the adherence and electrical coupling of neurons with the surface of micro-electronic devices. J. R. Soc. Interface 6, 1153–1165 (2009)

    Article  Google Scholar 

  60. A. Hai, D. Kamber, G. Malkinson, H. Erez, N. Mazurski, J. Shappir, M.E. Spira, Changing gears from chemical adhesion of cells to flat substrata toward engulfment of micro-protrusions by active mechanisms. J. Neural Eng. 6(6), 066009 (2009)

    Article  ADS  Google Scholar 

  61. A. Hai, J. Shappir, M.E. Spira, In-cell recordings by extracellular microelectrodes. Nat. Methods 7(3), 200–202 (2010)

    Article  Google Scholar 

  62. F. Santoro, J. Schnitker, G. Panaitov, A. Offenhäusser, On chip guidance and recording of cardiomyocytes with 3D mushroom-shaped electrodes. Nano Lett. 13(11), 5379–5384 (2013)

    Article  ADS  Google Scholar 

  63. B. Tian, P. Xie, T.J. Kempa, D.C. Bell, C.M. Lieber, Single-crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 4(12), 824–829 (2009)

    Article  ADS  Google Scholar 

  64. L. Xu, Z. Jiang, Q. Qing, L. Mai, Q. Zhang, C.M. Lieber, Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes. Nano Lett. 13(2), 746–751 (2013)

    Article  ADS  Google Scholar 

  65. Z. Jiang, Q. Qing, P. Xie, R. Gao, C.M. Lieber, Kinked p–n junction nanowire probes for high spatial resolution sensing and intracellular recording. Nano Lett. 12(3), 1711–1716 (2012)

    Article  ADS  Google Scholar 

  66. X. Duan, R. Gao, P. Xie, T. Cohen-Karni, Q. Qing, H.S. Choe, B. Tian, X. Jiang, C.M. Lieber, Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7(3), 174–179 (2012)

    Article  ADS  Google Scholar 

  67. R. Gao, S. Strehle, B. Tian, T. Cohen-Karni, P. Xie, X. Duan, Q. Qing, C.M. Lieber, Outside looking in: nanotube transistor intracellular sensors. Nano Lett. 12(6), 3329–3333 (2012)

    Article  ADS  Google Scholar 

  68. Q. Qing, Z. Jiang, L. Xu, R. Gao, L. Mai, C.M. Lieber, Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat. Nanotechnol. 9, 142–147 (2014)

    Article  ADS  Google Scholar 

  69. T.-M. Fu, X. Duan, Z. Jiang, X. Dai, P. Xie, Z. Cheng, C.M. Lieber, Sub-10-nm intracellular bioelectronic probes from nanowire–nanotube heterostructures. Proc. Natl. Acad. Sci. USA 111(4), 1259–1264 (2014)

    Article  ADS  Google Scholar 

  70. J.T. Robinson, M. Jorgolli, A.K. Shalek, M.-H. Yoon, R.S. Gertner, H. Park, Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 7(3), 180–184 (2012)

    Article  ADS  Google Scholar 

  71. C. Xie, Z. Lin, L. Hanson, Y. Cui, B. Cui, Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 7(3), 185–190 (2012)

    Article  ADS  Google Scholar 

  72. B.D. Almquist, N.A. Melosh, Fusion of biomimetic stealth probes into lipid bilayer cores. Proc. Natl. Acad. Sci. USA 107(13), 5815–5820 (2010)

    Article  ADS  Google Scholar 

  73. B.D. Almquist, N.A. Melosh, Molecular structure influences the stability of membrane penetrating biointerfaces. Nano Lett. 11(5), 2066–2070 (2011)

    Article  ADS  Google Scholar 

  74. B.D. Almquist, P. Verma, W. Cai, N.A. Melosh, Nanoscale patterning controls inorganic–membrane interface structure. Nanoscale 3(2), 391–400 (2011)

    Article  ADS  Google Scholar 

  75. X. Xie, A.M. Xu, M.R. Angle, N. Tayebi, P. Verma, N.A. Melosh, Mechanical model of vertical nanowire cell penetration. Nano Lett. 13(12), 6002–6008 (2013)

    Article  ADS  Google Scholar 

  76. Z.C. Lin, C. Xie, Y. Osakada, Y. Cui, B. Cui, Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials. Nat. Commun. 5, 3206 (2014)

    ADS  Google Scholar 

  77. Y. Sun, J.A. Rogers, Inorganic semiconductors for flexible electronics. Adv. Mater. 19(15), 1897–1916 (2007)

    Article  Google Scholar 

  78. Z. Yu, O. Graudejus, C. Tsay, S.P. Lacour, S. Wagner, B. Morrison III, Monitoring hippocampus electrical activity in vitro on an elastically deformable microelectrode array. J. Neurotrauma 26(7), 1135–1145 (2009)

    Article  Google Scholar 

  79. S.P. Lacour, S. Benmerah, E. Tarte, J. FitzGerald, J. Serra, S. McMahon, J. Fawcett, O. Graudejus, Z. Yu, B. Morrison III, Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Med. Biol. Eng. Comput. 48(10), 945–954 (2010)

    Article  Google Scholar 

  80. Y.-C. Chen, H.-L. Hsu, Y.-T. Lee, H.-C. Su, S.-J. Yen, C.-H. Chen, W.-L. Hsu, T.-R. Yew, S.-R. Yeh, D.-J. Yao, An active, flexible carbon nanotube microelectrode array for recording electrocorticograms. J. Neural Eng. 8(3), 034001 (2011)

    Article  ADS  Google Scholar 

  81. B.P. Timko, T. Cohen-Karni, G. Yu, Q. Qing, B. Tian, C.M. Lieber, Electrical recording from hearts with flexible nanowire device arrays. Nano Lett. 9(2), 914–918 (2009)

    Article  ADS  Google Scholar 

  82. T. Dvir, B.P. Timko, D.S. Kohane, R. Langer, Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 6(1), 13–22 (2011)

    Article  ADS  Google Scholar 

  83. R.F. Fakhrullin, A.I. Zamaleeva, R.T. Minullina, S.A. Konnova, V.N. Paunov, Cyborg cells: functionalisation of living cells with polymers and nanomaterials. Chem. Soc. Rev. 41(11), 4189–4206 (2012)

    Article  Google Scholar 

  84. X. Duan, C.M. Lieber, Nanoelectronics meets biology: from new nanoscale devices for live-cell recording to 3D innervated tissues. Chem. Asian J. 8(10), 2304–2314 (2013)

    Article  Google Scholar 

  85. B. Tian, J. Liu, T. Dvir, L. Jin, J.H. Tsui, Q. Qing, Z. Suo, R. Langer, D.S. Kohane, C.M. Lieber, Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11(11), 986–994 (2012)

    Article  ADS  Google Scholar 

  86. J. Liu, C. Xie, X. Dai, L. Jin, W. Zhou, C.M. Lieber, Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials. Proc. Natl. Acad. Sci. USA 110(17), 6694–6699 (2013)

    Article  ADS  Google Scholar 

  87. V.S. Polikov, P.A. Tresco, W.M. Reichert, Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148(1), 1–18 (2005)

    Article  Google Scholar 

  88. J.P. Seymour, D.R. Kipke, Neural probe design for reduced tissue encapsulation in CNS. Biomaterials 28(25), 3594–3607 (2007)

    Article  Google Scholar 

  89. M. HajjHassan, V. Chodavarapu, S. Musallam, NeuroMEMS: neural probe microtechnologies. Sensors 8(10), 6704–6726 (2008)

    Article  Google Scholar 

  90. T.D.Y. Kozai, D.R. Kipke, Insertion shuttle with carboxyl terminated self-assembled monolayer coatings for implanting flexible polymer neural probes in the brain. J. Neurosci. Methods 184(2), 199–205 (2009)

    Article  Google Scholar 

  91. R. Biran, D.C. Martin, P.A. Tresco, Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp. Neurol. 195(1), 115–126 (2005)

    Article  Google Scholar 

  92. J. Liu, T.-M. Fu, Z. Cheng, G. Hong, T. Zhou, L. Jin, M. Duvvuri, Z. Jiang, P. Kruskal, C. Xie, Syringe-injectable electronics. Nat. Nanotechnol. 10, 629–636 (2015)

    Article  ADS  Google Scholar 

  93. G. Hong, T.-M. Fu, T. Zhou, T.G. Schuhmann, J. Huang, C.M. Lieber, Syringe injectable electronics: precise targeted delivery with quantitative input/output connectivity. Nano Lett. 15(10), 6979–6984 (2015)

    Article  ADS  Google Scholar 

  94. C. Xie, J. Liu, T.-M. Fu, X. Dai, W. Zhou, C.M. Lieber, Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater. 14(12), 1286–1292 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles M. Lieber .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, A., Zheng, G., Lieber, C.M. (2016). Nanowire Interfaces to Cells and Tissue. In: Nanowires. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-41981-7_11

Download citation

Publish with us

Policies and ethics