Skip to main content

Reliable Clustering Indexes

  • Conference paper
  • First Online:
Trends in Applied Knowledge-Based Systems and Data Science (IEA/AIE 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9799))

  • 2571 Accesses

Abstract

This paper deals with a major challenge in clustering that is optimal model selection. It presents new efficient clustering quality indexes relying on feature maximization, which is an alternative measure to usual distributional measures relying on entropy or on Chi-square metric or vector-based measures such as Euclidean distance or correlation distance. Experiments compare the behavior of these new indexes with usual cluster quality indexes based on Euclidean distance on different kinds of test datasets for which ground truth is available. This comparison clearly highlights altogether the superior accuracy and stability of the new method, its efficiency from low to high dimensional range and its tolerance to noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Using p-value highlighting the significance of a feature for a cluster by comparing its contrast to unity contrast would be a potential alternative to the proposed approach. However, this method would introduce unexpected Gaussian smoothing in the process.

  2. 2.

    As regards the principle of the method, this type of selected features inevitably have a contrast greater than 1 in some other cluster(s) (see Eq. 3 for details).

  3. 3.

    http://www.research.att.com/lewis/reuters21578.html.

References

  1. Angel Latha Mary, S., Sivagami, A.N., Usha Rani, M.: Cluster validity measures dynamic clustering algorithms. ARPN J. Eng. Appl. Sci. 10(9), 4009–4012 (2015)

    Google Scholar 

  2. Bache, K. and Lichman, M.: UCI machine learning repository. University of California, School of Information and Computer Science. Irvine, CA, USA (2013). http://archive.ics.uci.edu/ml

  3. Bock, H.-H.: Probability model and hypothese testing in partitionning cluster analysis. In: Arabie, P., Hubert, L.J., De Soete, G. (eds.) Clustering and Classification, pp. 377–453. World Scientific, Singapore (1996)

    Chapter  Google Scholar 

  4. Calinsky, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. 3(1), 1–27 (1974)

    MathSciNet  MATH  Google Scholar 

  5. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. PAMI–1(2), 224–227 (1979)

    Article  Google Scholar 

  6. Dimitriadou, E., Dolnicar, S., Weingessel, A.: An examination of indexes for determining the number of clusters in binary data sets. Psychometrika 67(1), 137–159 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dunn, J.: Well separated clusters and optimal fuzzy partitions. J. Cybern. 4, 95–104 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fritzke, B.: A growing neural gas network learns topologies. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems 7, pp. 625–632 (1995)

    Google Scholar 

  9. Guerra, L., Robles, V., Bielza, C., Larrañaga, P.: A comparison of clustering quality indices using outliers and noise. Intell. Data Anal. 16, 703–715 (2012)

    Google Scholar 

  10. Gordon, A.D.: External validation in cluster analysis. Bull. Int. Stat. Inst. 51(2), 353–356 (1997). Response to comments. Bull. Int. Stat. Inst. 51(3), 414–415 (1998)

    MATH  Google Scholar 

  11. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. J. Intell. Inf. Syst. 17(2/3), 147–155 (2001)

    Article  MATH  Google Scholar 

  12. Hamerly, G., Elkan, C.: Learning the K in K-Means. In: Neural Information Processing Systems (2003)

    Google Scholar 

  13. Kassab, R., Lamirel, J.-C.: Feature based cluster validation for high dimensional data. In: IASTED International Conference on Artificial Intelligence and Applications (AIA), Innsbruck, Austria, pp. 97–103, February 2008

    Google Scholar 

  14. Lago-Fernández, L.F., Corbacho, F.: Using the negentropy increment to determine the number of clusters. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009, Part I. LNCS, vol. 5517, pp. 448–455. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Lamirel, J.-C., Francois, C., Al Shehabi, S., Hoffmann, M.: New classification quality estimators for analysis of documentary information: application topatent analysis and web mapping. Scientometrics 60(3), 445–462 (2004)

    Article  Google Scholar 

  16. Lamirel, J.-C., Mall, R., Cuxac, P., Safi, G.: Variations to incremental growing neural gas algorithm based on label maximization. In: Proceedings of IJCNN 2011, San Jose, CA, USA, pp. 956–965 (2011)

    Google Scholar 

  17. Lamirel, J.-C., Cuxac, P., Chivukula, A.S., Hajlaoui, K.: Optimizing text classification through efficient feature selection based on quality metric. J. Intell. Inf. Syst. 45(3), 379–396 (2014). Special Issue on PAKDD-QIMIE 2013, 1–18

    Article  Google Scholar 

  18. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press (1967)

    Google Scholar 

  19. Milligan, G.W., Cooper, M.C.: An examination of procedures for determining the number of clusters in a dataset. Psychometrika 50(2), 159–179 (1985)

    Article  Google Scholar 

  20. Rendón, E., Abundez, I., Arizmendi, A., Quiroz, E.M.: Internal versus external cluster validation indexes. Intern. J. Comput. Commun. 5(1), 27–34 (2011)

    Google Scholar 

  21. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  MATH  Google Scholar 

  22. Sun, L., Korhonen, A., Poibeau, T., Messiant, C.: Investigating the cross-linguistic potential of VerbNet-style classification. In: Proceedings of ACL, Beijing, China, pp. 1056–1064 (2010)

    Google Scholar 

  23. Yanchi, L., Zhongmou, L., Xiong, H., Gao, X., Wu, J.: Understanding of internal clustering validation measures. In: Proceedings of the 2010 IEEE International Conference on Data Mining, ICDM 2010, pp. 911–916 (2010)

    Google Scholar 

  24. Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 13(8), 841–847 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Charles Lamirel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Lamirel, JC. (2016). Reliable Clustering Indexes. In: Fujita, H., Ali, M., Selamat, A., Sasaki, J., Kurematsu, M. (eds) Trends in Applied Knowledge-Based Systems and Data Science. IEA/AIE 2016. Lecture Notes in Computer Science(), vol 9799. Springer, Cham. https://doi.org/10.1007/978-3-319-42007-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42007-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42006-6

  • Online ISBN: 978-3-319-42007-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics