Skip to main content

Set Covering Problem Resolution by Biogeography-Based Optimization Algorithm

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2016 (ICCSA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9786))

Included in the following conference series:

  • 1223 Accesses

Abstract

The research on Artificial Intelligence and Operational Research has provided models and techniques to solve many industrial problems. For instance, many real life problems can be formulated as a Set Covering Problem (SCP). The SCP is a classic NP-hard combinatorial problem consisting in find a set of solutions that cover a range of needs at the lowest possible cost following certain constraints. In this work, we use a recent metaheuristic called Biogeography-Based Optimization Algorithm (BBOA) inspired by biogeography, which mimics the migration behavior of animals in nature to solve optimization and engineering problems. In this paper, BBOA for the SCP is proposed. In addition, to improve performance we provide a new feature for the BBOA, which improve stagnation in local optimum. Finally, the experiment results show that BBOA is a excellent method for solving such problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amini, F., Ghaderi, P.: Hybridization of harmony search and ant colony optimization for optimal locating of structural dampers. Appl. Soft Comput. 13(5), 2272–2280 (2013)

    Article  Google Scholar 

  2. Balas, E., Carrera, M.C.: A dynamic subgradient-based branch-and-bound procedure for set covering. Oper. Res. 44(6), 875–890 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beasley, J.E., Jornsten, K.: Enhancing an algorithm for set covering problems. Eur. J. Oper. Res. 58(2), 293–300 (1992). http://ideas.repec.org/a/eee/ejores/v58y1992i2p293-300.html

    Article  MATH  Google Scholar 

  4. Brusco, M.J., Jacobs, L.W., Thompson, G.M.: A morphing procedure to supplement a simulated annealing heuristic for cost- and coverage-correlated set-covering problems. Ann. Oper. Res. 86, 611–627 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caprara, A., Fischetti, M., Toth, P., Vigo, D., Guida, P.L.: Algorithms for railway crew management. Math. Program. 79(1–3), 125–141 (1997). http://dx.doi.org/10.1007/BF02614314

    MathSciNet  MATH  Google Scholar 

  6. Caserta, M.: Tabu search-based metaheuristic algorithm for large-scale set covering problems. In: Doerner, K.F., Gendreau, M., Greistorfer, P., Gutjahr, W., Hartl, R.F., Reimann, M. (eds.) Metaheuristics. OR/CSIS, vol. 39, pp. 43–63. Springer, Heidelberg (2007). http://dx.doi.org/10.1007/978-0-387-71921-4_3

    Chapter  Google Scholar 

  7. Crawford, B., Soto, R., Berríos, N., Johnson, F., Paredes, F.: Solving the set covering problem with binary cat swarm optimization. In: Tan, Y., Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds.) ICSI-CCI 2015. LNCS, vol. 9140, pp. 41–48. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  8. Crawford, B., Soto, R., Cuesta, R., Paredes, F.: Application of the artificial bee colony algorithm for solving the set covering problem. Sci. World J. 2014(189164), 1–8 (2014)

    Article  Google Scholar 

  9. Crawford, B., Soto, R., Monfroy, E., Palma, W., Castro, C., Paredes, F.: Parameter tuning of a choice-function based hyperheuristic using particle swarm optimization. Expert Syst. Appl. 40(5), 1690–1695 (2013)

    Article  Google Scholar 

  10. Crawford, B., Soto, R., Olea, C., Johnson, F., Paredes, F.: Binary bat algorithms for the set covering problem. In: 2015 10th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–4, June 2015

    Google Scholar 

  11. Crawford, B., Soto, R., Olivares Suarez, M., Paredes, F., Johnson, F.: Binary firefly algorithm for the set covering problem. In: 2014 9th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–5, June 2014

    Google Scholar 

  12. Crawford, B., Soto, R., Cuesta, R., Paredes, F.: Application of the artificial bee colony algorithm for solving the set covering problem. Sci. World J. 2014, 1–8 (2014)

    Article  Google Scholar 

  13. Crawford, B., Soto, R., Monfroy, E., Paredes, F., Palma, W.: A hybrid ant algorithm for the set covering problem. Int. J. Phys. Sci. 6, 4667–4673 (2011)

    Google Scholar 

  14. Crawford, B., Soto, R., Olivares-Suárez, M., Paredes, F.: A binary firefly algorithm for the set covering problem. In: Silhavy, R., Senkerik, R., Oplatkova, Z.K., Silhavy, P., Prokopova, Z. (eds.) Modern Trends and Techniques in Computer Science. AISC, vol. 285, pp. 65–73. Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-3-319-06740-7_6

    Chapter  Google Scholar 

  15. Eremeev, A.V., Kolokolov, A.A., Zaozerskaya, L.A.: A hybrid algorithm for set covering problem. In: Proceedings of International Workshop Discrete Optimization Methods in Scheduling and Computer-Aided Design, pp. 123–129 (2000)

    Google Scholar 

  16. Fisher, M.L., Kedia, P.: Optimal solution of set covering/partitioning problems using dual heuristics. Manage. Sci. 36(6), 674–688 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fisher, M.L., Rosenwein, M.B.: An interactive optimization system for bulk-cargo ship scheduling. Naval Res. Logistics (NRL) 36(1), 27–42 (1989)

    Article  Google Scholar 

  18. Foster, B.A., Ryan, D.: An integer programming approach to the vehicle scheduling problem. Oper. Res. 27, 367–384 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  19. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1990)

    MATH  Google Scholar 

  20. Goldberg, D.E.: Real-coded genetic algorithms, virtual alphabets, and blocking. Complex Syst. 5, 139–167 (1990)

    MathSciNet  MATH  Google Scholar 

  21. Guanghui Lan, A., Depuy, G.W.B., G.E.W.C.: Discrete optimization an effectiveand simple heuristic for the set covering problem abstract (2005)

    Google Scholar 

  22. Han, L., Kendall, G., Cowling, P.: An adaptive length chromosome hyperheuristic genetic algorithm for a trainer scheduling problem. In: Proceedings of the fourth Asia-Pacific Conference on Simulated Evolution And Learning, (SEAL 2002), Orchid Country Club, Singapore, pp. 267–271 (2002)

    Google Scholar 

  23. Ma, H., Simon, D.: Biogeography-based optimization with blended migration for constrained optimization problems. In: Pelikan, M., Branke, J. (eds.) Genetic and Evolutionary Computation Conference, GECCO 2010, Proceedings, Portland, Oregon, USA, July 7–11, 2010. pp. 417–418. ACM (2010). http://doi.acm.org/10.1145/1830483.1830561

  24. Michalewicz, Z.: Genetic algorithms + data structures = evolution programs, 3rd edn. Springer-Verlag, London, UK (1996)

    Book  MATH  Google Scholar 

  25. Mo, H., Xu, L.: Biogeography migration algorithm for traveling salesman problem. In: Tan, Y., Shi, Y., Tan, K.C. (eds.) ICSI 2010, Part I. LNCS, vol. 6145, pp. 405–414. Springer, Heidelberg (2010). http://dx.doi.org/10.1007/978-3-642-13495-1_50

    Chapter  Google Scholar 

  26. Mudaliar, D., Modi, N.: Unraveling travelling salesman problem by genetic algorithm using m-crossover operator. In: 2013 International Conference on Signal Processing Image Processing Pattern Recognition (ICSIPR), pp. 127–130, February 2013

    Google Scholar 

  27. Naji-Azimi, Z., Toth, P., Galli, L.: An electromagnetism metaheuristic for the unicost set covering problem. Eur. J. Oper. Res. 205(2), 290–300 (2010). http://EconPapers.repec.org/RePEc:eee:ejores:v:205:y:2010:i:2

    Article  MathSciNet  MATH  Google Scholar 

  28. Simon, D.: Biogeography-based optimization. Evol. Comput. IEEE Trans. 12(6), 702–713 (2008)

    Article  Google Scholar 

  29. Smith, B.M.: Impacs - a bus crew scheduling system using integer programming. Math. Program. 42(1), 181–187 (1988). http://dx.doi.org/10.1007/BF01589402

    Article  MathSciNet  Google Scholar 

  30. Soto, R., Crawford, B., Olivares, R., Barraza, J., Johnson, F., Paredes, F.: A binary cuckoo search algorithm for solving the set covering problem. In: Vicente, J.M.F., Álvarez-Sánchez, J.R., López, F.P., Toledo-Moreo, F.J., Adeli, H. (eds.) Bioinspired Computation in Artificial Systems. LNCS, vol. 9108, pp. 88–97. Springer, Heidelberg (2015). http://dx.doi.org/10.1007/978-3-319-18833-1_10

    Chapter  Google Scholar 

  31. Thomson, G.: A simulated annealing heuristic for shift-scheduling using non-continuously available employees. Comput. Oper. Res. 23, 275–288 (1996)

    Article  MATH  Google Scholar 

  32. Toregas, C., Swain, R., ReVelle, C., Bergman, L.: The location of emergency service facilities. Oper. Res. 19(6), 1363–1373 (1971). http://dx.doi.org/10.1287/opre.19.6.1363

    Article  MATH  Google Scholar 

  33. Vasko, F.J., Wolf, F.E., Stott, K.L.: A set covering approach to metallurgical grade assignment. Eur. J. Oper. Res. 38(1), 27–34 (1989). http://EconPapers.repec.org/RePEc:eee:ejores:v:38:y:1989:i:1:p:27-34

    Article  MathSciNet  Google Scholar 

  34. Xu, Y., Kochenberger, G., Wang, H.: Pre-processing method with surrogate constraint algorithm for the set covering problem (2008)

    Google Scholar 

  35. Zhang, Y., Wu, L., Wang, S., Huo, Y.: Chaotic artificial bee colony used for cluster analysis. In: Chen, R. (ed.) ICICIS 2011 Part I. CCIS, vol. 134, pp. 205–211. Springer, Heidelberg (2011). http://dx.doi.org/10.1007/978-3-642-18129-0_33

    Chapter  Google Scholar 

  36. Zhao, B.B., Deng, C., Yang, Y., Peng, H.: Novel binary biogeography-based optimization algorithm for the knapsack problem. In: Tan, Y., Shi, Y., Ji, Z. (eds.) ICSI 2012, Part I. LNCS, vol. 7331, pp. 217–224. Springer, Heidelberg (2012). http://dx.doi.org/10.1007/978-3-642-30976-2_26

    Chapter  Google Scholar 

Download references

Acknowledgements

The author Broderick Crawford is supported by grant CONICYT/FONDE-CYT/REGULAR/1140897 and Ricardo Soto is supported by grant CONICYT/FONDECYT/REGULAR/1160455.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Riquelme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Crawford, B., Soto, R., Riquelme, L., Olguín, E., Misra, S. (2016). Set Covering Problem Resolution by Biogeography-Based Optimization Algorithm. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2016. ICCSA 2016. Lecture Notes in Computer Science(), vol 9786. Springer, Cham. https://doi.org/10.1007/978-3-319-42085-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42085-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42084-4

  • Online ISBN: 978-3-319-42085-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics