Skip to main content

Abstract

Defensive caterpillar mimicry by plants was first suggested by Rothschild (1974, 1984) concerning the shape of stipules found along the branches of Passiflora caerulae that look like caterpillars, slugs or snails climbing along the stems. Soon after, Benson et al. (1975) proposed that the yellow-orange serrulate stipules of Passiflora platyloba and P. maliformi seem to mimic young heliconian caterpillars, but all this was not known to me till the year 2001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbo S, Zezak I, Schwartz E, Lev-Yadun S, Gopher A (2008) Experimental harvesting of wild peas in Israel: implications for the origins of Near East farming. J Archaeol Sci 35:922–929

    Article  Google Scholar 

  • Abbo S, Saranga Y, Peleg Z, Kerem Z, Lev-Yadun S, Gopher A (2009) Reconsidering legumes vs. cereals domestication. Q Rev Biol 84:29–50

    Article  PubMed  Google Scholar 

  • Abbo S, Rachamim E, Zehavi Y, Zezak I, Lev-Yadun S, Gopher A (2011) Experimental growing of wild pea in Israel and its bearing on Near Eastern plant domestication. Ann Bot 107:1399–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abbo S, Lev-Yadun S, Heun M, Gopher A (2013a) On the ‘lost’ crops of the Neolithic Near East. J Exp Bot 64:815–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abbo S, Zezak I, Zehavi Y, Schwarts E, Lev-Yadun S, Gopher A (2013b) Six seasons of wild pea harvest in Israel: bearing on Near Eastern plant domestication. J Archaeol Sci 40:2095–2100

    Article  Google Scholar 

  • Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2011) Plant cell walls. From chemistry to biology. Garland Science, New York

    Google Scholar 

  • Aviezer I, Lev-Yadun S (2015) Pod and seed defensive coloration (camouflage and mimicry) in the genus Pisum. Isr J Plant Sci 62:39–51

    Article  Google Scholar 

  • Benson WW, Brown KS, Gilbert LE (1975) Coevolution of plants and herbivores: passion flower butterflies. Evolution 29:659–680

    Article  Google Scholar 

  • Ben-Ze’ev N, Zohary D (1973) Species relationships in the genus Pisum L. Isr J Bot 22:73–91

    Google Scholar 

  • Bowers DM (1993) Aposematic caterpillars: life-styles of the warningly colored and unpalatable. In: Stamp NE, Casey TM (eds) Caterpillars: ecological and evolutionary constraints on foraging. Chapman & Hall, New York, pp 331–371

    Google Scholar 

  • Cahn MG, Harper JL (1976) The biology of the leaf mark polymorphism in Trifolium repens L. 2. Evidence for the selection of leaf marks by rumen fistulated sheep. Heredity 37:327–333

    Article  Google Scholar 

  • Christensen-Dean GA, Moore R (1993) Development of chlorenchyma and window tissues in leaves of Peperomia columella. Ann Bot 71:141–146

    Article  Google Scholar 

  • Coppinger RP (1970) The effect of experience and novelty on avian feeding behavior with reference to the evolution of warning coloration in butterflies. II. Reactions of naïve birds to novel insects. Am Nat 104:323–335

    Article  Google Scholar 

  • Cott HB (1940) Adaptive coloration in animals. Methuen & Co. Ltd., London

    Google Scholar 

  • Cronin TW, Johnsen S, Marshall NJ, Warrant EJ (2014) Visual ecology. Princeton University Press, Princeton

    Google Scholar 

  • Dafni A (1984) Mimicry and deception in pollination. Annu Rev Ecol Syst 15:259–278

    Article  Google Scholar 

  • D’Horta FM, Kirwan GM, Buzzetti D (2012) Gaudy juvenile plumages of cinereous mourner (Laniocera hypopyrra) and Brazilian laniisoma (Laniisoma elegans). Wilson J Ornithol 124:429–435

    Article  Google Scholar 

  • Eisner T, Eisner M, Siegler M (2005) Secret weapons. Defenses of insects, spiders, scorpions, and other many-legged creatures. Harvard University Press, Cambridge

    Google Scholar 

  • Faegri K, van der Pijl L (1979) The principles of pollination ecology, 3rd edn. Pergamon Press, Oxford

    Google Scholar 

  • Fahn A (1990) Plant anatomy, 4th edn. Pergamon Press, Oxford

    Google Scholar 

  • Fahn A, Zohary M (1955) On the pericarpial structure of the legumen, its evolution and relation to dehiscence. Phytomorphology 5:99–111

    Google Scholar 

  • Gibson DO (1980) The role of escape in mimicry and polymorphism: I. The response of captive birds to artificial prey. Biol J Linn Soc 14:201–214

    Article  Google Scholar 

  • Johnsen S (2001) Hidden in plain sight: the ecology and physiology of organismal transparency. Biol Bull 201:301–318

    Article  CAS  PubMed  Google Scholar 

  • Krulik GA (1980) Light transmission in window-leaved plants. Can J Bot 58:1591–1600

    Article  Google Scholar 

  • Lev-Yadun S (2013a) Theoretical and functional complexity of white variegation of unripe fleshy fruits. Plant Signal Behav 8:e25851

    Article  PubMed Central  Google Scholar 

  • Lev-Yadun S (2014b) Defensive masquerade by plants. Biol J Linn Soc 113:1162–1166

    Article  Google Scholar 

  • Lev-Yadun S (2015a) Partly transparent young legume pods: do they mimic caterpillars for defense and simultaneously enable better photosynthesis? Plant Signal Behav 10:e1048941

    Article  PubMed  PubMed Central  Google Scholar 

  • Lev-Yadun S (2015b) Gloger’s rule in plants: the species and ecosystem levels. Plant Signal Behav 10:e1040968

    Article  PubMed  Google Scholar 

  • Lev-Yadun S, Inbar M (2002) Defensive ant, aphid and caterpillar mimicry in plants. Biol J Linn Soc 77:393–398

    Article  Google Scholar 

  • Lev-Yadun S, Gopher A, Abbo S (2000) The cradle of agriculture. Science 288:1602–1603

    Article  CAS  PubMed  Google Scholar 

  • Lichter-Marck IH, Wylde M, Aaron E, Oliver JC, Singer MS (2015) The struggle for safety: effectiveness of caterpillar defenses against bird predation. Oikos 124:525–533

    Article  Google Scholar 

  • Lindström L, Rowe C, Guilford T (2001) Pyrazine odour makes visually conspicuous prey aversive. Proc R Soc Lond B 268:159–162

    Article  Google Scholar 

  • Londoño GA, García DA, Martínez MAS (2015) Morphological and behavioral evidence of Batesian mimicry in nestlings of a lowland Amazonian bird. Am Nat 185:135–141

    Article  PubMed  Google Scholar 

  • Moore R, Langenkamp M (1991) Tissue partitioning during leaf development in ornamentally-grown Frithia pulchra (Mesembryanthemaceae), a ‘window plant’. Ann Bot 67:279–283

    Google Scholar 

  • Moran JA, Clarke C, Gowen BE (2012) The use of light in prey capture by the tropical pitcher plant Nepenthes aristolochioides. Plant Signal Behav 7:957–960

    Article  PubMed  PubMed Central  Google Scholar 

  • Niemelä P, Tuomi J (1987) Does the leaf morphology of some plants mimic caterpillar damage? Oikos 50:256–257

    Article  Google Scholar 

  • Oelschlägel B, Gorb S, Wanke S, Neinhuis C (2009) Structure and biomechanics of trapping flower trichomes and their role in the pollination biology of Aristolochia plants (Aristolochiaceae). New Phytol 184:988–1002

    Article  PubMed  Google Scholar 

  • Purcell JE (1980) Influence of siphonophore behavior upon their natural diets: evidence for aggressive mimicry. Science 209:1045–1047

    Article  CAS  PubMed  Google Scholar 

  • Rothschild M (1974) Modified stipules of Passiflora which resemble horned caterpillars. Proc R Entomol Soc Lond 39:16

    Google Scholar 

  • Rothschild M (1984) Aide mémoire mimicry. Ecol Entomol 9:311–319

    Article  Google Scholar 

  • Ruxton GD, Sherratt TN, Speed MP (2004) Avoiding attack. The evolutionary ecology of crypsis, warning signals & mimicry. Oxford University Press, Oxford

    Book  Google Scholar 

  • Schaefer HM, Ruxton GD (2009) Deception in plants: mimicry or perceptual exploitation? Trends Ecol Evol 24:676–685

    Article  PubMed  Google Scholar 

  • Schaefer HM, Ruxton GD (2014) Fenestration: a window of opportunity for carnivorous plants. Biol Lett 10:20140134

    Article  PubMed  PubMed Central  Google Scholar 

  • Shapiro AM (1981a) Egg-mimics of Streptanthus (Cruciferae) deter oviposition by Pieris sisymbrii (Lepidoptera: Pieridae). Oecologia 48:142–143

    Article  Google Scholar 

  • Shapiro AM (1981b) The pierid red-egg syndrome. Am Nat 117:276–294

    Article  Google Scholar 

  • Vogelmann TC (1993) Plant tissue optics. Annu Rev Plant Physiol Plant Mol Biol 44:231–251

    Article  Google Scholar 

  • Whitfield J (2002) Plants feign infestation. In: Nature science update. Nature News Service, November 14, 2002

    Google Scholar 

  • Wickler W (1968) Mimicry in plants and animals. Weidenfeld and Nicolson, London

    Google Scholar 

  • Williams KS, Gilbert LE (1981) Insects as selective agents on plant vegetative morphology: egg mimicry reduces egg laying by butterflies. Science 212:467–469

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki K (2016) Caterpillar mimicry by plant galls as a visual defense against herbivores. J Theor Biol (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lev-Yadun, S. (2016). Caterpillar Mimicry. In: Defensive (anti-herbivory) Coloration in Land Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-42096-7_56

Download citation

Publish with us

Policies and ethics