Skip to main content

On Three Categories of Conscious Machines

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9793))

Included in the following conference series:

Abstract

Reviewing recent closely related developments at the crossroads of biomedical engineering, artificial intelligence and biomimetic technology, in this paper, we attempt to distinguish phenomenological consciousness into three categories based on embodiment: one that is embodied by biological agents, another by artificial agents and a third that results from collective phenomena in complex dynamical systems. Though this distinction by itself is not new, such a classification is useful for understanding differences in design principles and technology necessary to engineer conscious machines. It also allows one to zero-in on minimal features of phenomenological consciousness in one domain and map on to their counterparts in another. For instance, awareness and metabolic arousal are used as clinical measures to assess levels of consciousness in patients in coma or in a vegetative state. We discuss analogous abstractions of these measures relevant to artificial systems and their manifestations. This is particularly relevant in the light of recent developments in deep learning and artificial life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arsiwalla, X.D., Verschure, P.: Computing information integration in brain networks. In: Wierzbicki, A., Brandes, U., Schweitzer, F., Pedreschi, D., et al. (eds.) NetSci-X 2016. LNCS, vol. 9564, pp. 136–146. Springer, Heidelberg (2016). doi:10.1007/978-3-319-28361-6_11

    Chapter  Google Scholar 

  2. Arsiwalla, X.D., Verschure, P.F.: Integrated information for large complex networks. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2013)

    Google Scholar 

  3. Hutchison, C.A., Chuang, R.Y., Noskov, V.N., Assad-Garcia, N., Deerinck, T.J., Ellisman, M.H., Gill, J., Kannan, K., Karas, B.J., Ma, L., et al.: Design and synthesis of a minimal bacterial genome. Science 351(6280), aad6253 (2016)

    Article  Google Scholar 

  4. Kurihara, K., Okura, Y., Matsuo, M., Toyota, T., Suzuki, K., Sugawara, T.: A recursive vesicle-based model protocell with a primitive model cell cycle. Nat. Commun. 6, 8352 (2015)

    Article  Google Scholar 

  5. Laureys, S.: The neural correlate of (un) awareness: lessons from the vegetative state. Trends Cogn. Sci. 9(12), 556–559 (2005)

    Article  Google Scholar 

  6. Laureys, S., Owen, A.M., Schiff, N.D.: Brain function in coma, vegetative state, and related disorders. Lancet Neurol. 3(9), 537–546 (2004)

    Article  Google Scholar 

  7. Malyshev, D.A., Dhami, K., Lavergne, T., Chen, T., Dai, N., Foster, J.M., Corrêa, I.R., Romesberg, F.E.: A semi-synthetic organism with an expanded genetic alphabet. Nature 509(7500), 385–388 (2014)

    Article  Google Scholar 

  8. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the European Research Council’s CDAC project: “The Role of Consciousness in Adaptive Behavior: A Combined Empirical, Computational and Robot based Approach” (ERC-2013-ADG 341196).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xerxes D. Arsiwalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Arsiwalla, X.D., Herreros, I., Verschure, P. (2016). On Three Categories of Conscious Machines. In: Lepora, N., Mura, A., Mangan, M., Verschure, P., Desmulliez, M., Prescott, T. (eds) Biomimetic and Biohybrid Systems. Living Machines 2016. Lecture Notes in Computer Science(), vol 9793. Springer, Cham. https://doi.org/10.1007/978-3-319-42417-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42417-0_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42416-3

  • Online ISBN: 978-3-319-42417-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics