Skip to main content

Embedding \(\varLambda _{\widetilde{V }}^{0}\) ⊆ X ⊆ MV*

  • Chapter
  • First Online:
Foundations of Symmetric Spaces of Measurable Functions

Part of the book series: Developments in Mathematics ((DEVM,volume 45))

  • 899 Accesses

Abstract

In this chapter, we prove the embedding theorem for classes of symmetric spaces having the same fundamental functions. The embedding theorem asserts that for every symmetric space X with a given fundamental function V = φ X , there are continuous embeddings \(\boldsymbol{\varLambda }_{\widetilde{V }}^{0} \subseteq \mathbf{X} \subseteq \mathbf{M}_{V _{{\ast}}}\). This means that the minimal part \(\boldsymbol{\varLambda }_{\widetilde{V }}^{0}\) of the Lorentz space \(\boldsymbol{\varLambda }_{\widetilde{V }}\) is the smallest symmetric space whose (concave) fundamental function \(\widetilde{V }\) is equivalent to V, while the Marcinkiewicz space \(\mathbf{M}_{V _{{\ast}}}\) is the largest symmetric space X with \(\varphi _{\mathbf{X}} =\varphi _{\mathbf{M}_{V_{{\ast}}}} = V\). The renorming theorem and other consequences of the embedding theorem are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calderon, A., Zygmund, A.: On the existence of certain singular integrals. Acta Math. 88 (1), 85–139 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  2. Edmunds, D., Evans, W.: Hardy Operators, Function Spaces and Embeddings. Springer Monographs in Mathematics. Springer, Berlin/Heidelberg (2013)

    MATH  Google Scholar 

  3. Eisenstadt, B., Lorentz, G., et al.: Boolean rings and Banach lattices. Ill. J. Math. 3 (4), 524–531 (1959)

    MathSciNet  MATH  Google Scholar 

  4. Greenberg, H., Pierskalla, W.: A review of quasi-convex functions. Oper. Res. 19 (7), 1553–1570 (1971)

    Article  MATH  Google Scholar 

  5. Halperin, I.: Function spaces. Can. J. Math 5, 273–288 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hardy, G., Littlewood, J., Pólya, G.: Inequalities. Cambridge university press, Cambridge (1952)

    MATH  Google Scholar 

  7. Krein, S.G., Petunin, Y.I., Semenov, E.M.: Interpolation of Linear Operators. Translations of Mathematical Monographs, vol. 54. American Mathematical Society, Providence (1982). In Russian: Nauka, Moscow (1978)

    Google Scholar 

  8. Lorentz, G.G.: Some new functional spaces. Ann. Math. 51 (2), 37–55 (1950). Zbl 0035.35602 (English)

    Google Scholar 

  9. Lorentz, G.: On the theory of spaces λ. Pac. J. Math. 1 (3), 411–429 (1951)

    Google Scholar 

  10. Lorentz, G.: Relations between function spaces. Proc. Am. Math. Soc. 12 (1), 127–132 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lorentz, G.: Bernstein Polynomials, 2nd edn. Chelsea Publishing, New York (1986)

    MATH  Google Scholar 

  12. Lorentz, G.G.: Mathematics from Leningrad to Austin. In: Rudolph, A., Lorentz. G.G. (eds.) Lorentz’ Selected Works in Real, Functional, and Numerical Analysis. Contemporary Mathematicians, vol. 2, xxviii, 648 p. Birkhäuser, Boston. Zbl 0874.01013 (English)

    Google Scholar 

  13. Marcinkiewicz, J.: Sur l’interpolation d’opérations. C. R. Acad. Sci. Paris 208, 1272–1273 (1939)

    MATH  Google Scholar 

  14. Semenov, E.: A scale of spaces with an interpolation property. Dokl. Akad. Nauk SSSR 148, 1038–1041 (1963)

    MathSciNet  Google Scholar 

  15. Semenov, E.: Imbedding theorems for Banach spaces of measurable functions. Dokl. Akad. Nauk SSSR 156, 1292–1295 (1964)

    MathSciNet  Google Scholar 

  16. Semenov, E.: Interpolation of linear operators in symmetric spaces. Dokl. Akad. Nauk SSSR 164 (4), 746–749 (1965)

    MathSciNet  Google Scholar 

  17. Sharpley, R.: Spaces λ α (x) and interpolation. J. Funct. Anal. 11 (4), 479–513 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  18. Stein, E.: Singular Integrals and Differentiability Properties of Functions, vol. 2. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  19. Zygmund, A.: On a theorem of Marcinkiewicz concerning interpolation of operations. J. Math. Pures Appl. 35 (9), 223–248 (1956)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rubshtein, BZ.A., Grabarnik, G.Y., Muratov, M.A., Pashkova, Y.S. (2016). Embedding \(\varLambda _{\widetilde{V }}^{0}\) ⊆ X ⊆ MV* . In: Foundations of Symmetric Spaces of Measurable Functions. Developments in Mathematics, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-319-42758-4_12

Download citation

Publish with us

Policies and ethics