Skip to main content

Converged Wireless Access/Optical Metro Networks in Support of Cloud and Mobile Cloud Services Deploying SDN Principles

  • Chapter
  • First Online:
Fiber-Wireless Convergence in Next-Generation Communication Networks

Abstract

This chapter proposes a next-generation ubiquitous converged infrastructure to support cloud and mobile cloud computing services. The proposed infrastructure facilitates efficient and seamless interconnection of fixed and mobile end users with computational resources through a heterogeneous network integrating optical metro and wireless access networks. To achieve this, a layered architecture which deploys cross-domain virtualization as a key technology is presented. The proposed architecture is well aligned and fully compliant with the Open Networking Foundation (ONF) Software-Defined Networking (SDN) architecture and takes advantage of the associated functionalities and capabilities. A modeling/simulation framework was developed to evaluate the proposed architecture and identify planning and operational methodologies to allow global optimization of the integrated converged infrastructure. A description of the tool and some relevant modeling results are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tzanakaki A et al (2014) Planning of dynamic virtual optical cloud infrastructures: the GEYSERS approach. IEEE Commun Mag 52(1):26–34

    Article  Google Scholar 

  2. Satyanarayanan M, Bahl P, Caceres R, Davies N (2009) The case for VM-based cloudlets in mobile computing. IEEE Pervasive Comput 8(4):14–23

    Article  Google Scholar 

  3. Mun K Mobile cloud computing challenges. TechZine Mag. http://goo.gl/AuI5ZM

  4. http://www.gogrid.com/

  5. http://www.flexiscale.com/

  6. Tzanakaki A et al (2013) Virtualization of heterogeneous wireless-optical network and IT support of cloud and mobile services. IEEE Commun Mag 51(8):155–161

    Article  Google Scholar 

  7. Yeganeh SH et al (2013) On scalability of software-defined networking. IEEE Commun Mag 51(2):136–141

    Article  MathSciNet  Google Scholar 

  8. Mateos G, Rajawat K (2013) Dynamic network cartography. IEEE Signal Process Mag 129–143

    Google Scholar 

  9. Rajawat K (2012) Dynamic optimization and monitoring in communication networks. University of Minnesota, Ph.D. dissertation

    Google Scholar 

  10. Channegowda M et al (2013) Software defined optical networks technology and infrastructure: enabling software-defined optical network operations (invited). IEEE/OSA JOCN 5(10):A274–A282

    Google Scholar 

  11. Zhang S, Tornatore M, Shen G, Zhang J, Mukherjee B (2014) Evolving traffic grooming in multi-layer flexible-grid optical networks with software-defined elasticity. J Lightwave Technol 32:2905–2914

    Article  Google Scholar 

  12. France Telecom-Orange and Alcatel-Lucent deploy world’s first live 400 Gbps per wavelength optical link, Alcatel Lucent press release Feb 2013. http://goo.gl/xtvLBa

  13. Gerstel O, Jinno M, Lord A, Yoo SJB (2012) Elastic optical networking: a new dawn for the optical layer? IEEE Commun Mag 50(2):s12–s20

    Article  Google Scholar 

  14. IEEE 802.3 Ethernet Working Group Communication (2012) IEEE 802.3â„¢ industry connections ethernet bandwidth assessment. http://goo.gl/Zp2Xym

  15. Jinno M et al (2009) Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies. IEEE Commun Mag 47(11):66–73

    Article  Google Scholar 

  16. Verisma ivx 8000, Optical Packet Switch and Transport. Intune Networks, 2011

    Google Scholar 

  17. Zervas GS, Triay J, Amaya N, Qin Y, Cervelló-Pastor C, Simeonidou D (2011) Time shared optical network (TSON): a novel metro architecture for flexible multi-granular services. Opt Express 19:B509–B514

    Article  Google Scholar 

  18. Lehr W, Sirbu M, Gillett S (2004) Municipal wireless broadband policy and business implications of emerging technologies. In: Competition in networking: wireless and wireline. London Business School

    Google Scholar 

  19. [RFIC2013] Cellular versus WiFi: future convergence or an utter divergence? In: Radio frequency integrated circuits symposium (RFIC), 2013 IEEE, pp I, II

    Google Scholar 

  20. Castelli MJ (2002) Network sales and services handbook. Cisco Press. ISBN 978-1-58705-090-9

    Google Scholar 

  21. Peng S, Nejabati R, Azodolmolky S, Escalona E, Simeonidou D (2011) An impairment-aware virtual optical network composition mechanism for future internet. Opt Express 19(26):B251–B259

    Google Scholar 

  22. Jinno M et al (2013) Virtualization in optical networks from network level to hardware level. IEEE/OSA J Opt Commun Netw 5(10):A46–A56

    Article  Google Scholar 

  23. García-Espín JA, Ferrer Riera J, Figuerola S, Ghijsen M, Demchemko Y, Buysse J, De Leenheer M, Develder C, Anhalt F, Soudan S (2012) Logical infrastructure composition layer, the GEYSERS holistic approach for infrastructure virtualisation. In: Proceedings of TNC

    Google Scholar 

  24. Tzanakaki A, Anastasopoulos MP, Georgakilas K (2013) Dynamic virtual optical networks supporting uncertain traffic demands. IEEE/OSA J Opt Commun Netw 5(10) (Invited)

    Google Scholar 

  25. Li Y, Qiu L, Zhang Y, Mahajan R, Rozner E (2008) Predictable performance optimization for wireless networks. In: Proceedings of ACM SIGCOMM, Seattle, WA, USA

    Google Scholar 

  26. Bhanage G, Vete D, Seskar I, Raychaudhuri D (2010) SplitAP: leveraging wireless network virtualization for flexible sharing of WLANs. In: Proceedings of IEEE GLOBECOM 2010, pp 1–6

    Google Scholar 

  27. Aljabari G, Eren E (2010) Virtual WLAN: extension of wireless networking into virtualized environments. Int J Comp Res Inst Intell Comput Syst 10(4):1–9

    Google Scholar 

  28. Kokku R et al (2013) CellSlice: cellular wireless resource slicing for active RAN sharing. In: Proceedings of COMSNETS

    Google Scholar 

  29. http://goo.gl/oT5E5t http://www.contextream.com/news/press-releases/2014/contextream-announces-first-commercially-available-opendaylight-based,-carrier-grade-sdn-fabric-for-nfv/

  30. Nyren R, Edmonds A, Papaspyrou A, Metsch T (2011) Open cloud computing interface—core. GFD-P-R.183, OCCI WG

    Google Scholar 

  31. Dhody D, Lee Y, Ciulli N, Contreras L, Gonzales de Dios O (2013) Cross stratum optimization enabled path computation. IETF Draft

    Google Scholar 

  32. Crabbe E, Medved J, Minei I, Varga R (2013) PCEP extensions for stateful PCE. IETF Draft

    Google Scholar 

  33. Tzanakaki A et al (2014) A converged network architecture for energy efficient mobile cloud computing. In: Proceedings of ONDM 2014, pp 120–125

    Google Scholar 

  34. MAINS Deliverable D2.3. OBST mesh metro network design and control plane requirements

    Google Scholar 

  35. Rofoee BR et al (2015) First demonstration of service-differentiated converged optical sub-wavelength and LTE/WiFi networks over GEANT. In: Proceedings of OFC 2015, paper Th2A.35

    Google Scholar 

  36. Auer G, Giannini V (2011) Cellular energy efficiency evaluation framework. In: Proceedings of the vehicular technology conference

    Google Scholar 

  37. Valancius V, Laoutaris N, Massouli L, Diot C, Rodriguez P (2009) Greening the internet with nano data centers.In: Proceedings of the 5th international conference on emerging networking experiments and technologies (CoNEXT’09), ACM, New York, NY, USA, pp 37–48

    Google Scholar 

  38. Fang Y, Chlamtac I (2002) Analytical generalized results for handoff probability in wireless networks. IEEE Trans Commun 50(3):369–399

    Article  Google Scholar 

  39. Chowdhury M, Samuel F, Boutaba R (2010) PolyViNE: policy-based virtual network embedding across multiple domains. In: Proceedings of ACM SIGCOMM workshop on VISA’10

    Google Scholar 

  40. Chu Jian, Lea Chin-Tau (2008) New architecture and algorithms for fast construction of hose-model VPNs. IEEE/ACM Trans Netw 16(3):670–679

    Article  Google Scholar 

  41. Duffield NG, Goyal P, Greenberg A, Mishra P, Ramakrishnan KK, der Merwe JEV (1999) A flexible model for resource management in virtual private networks. In: Proceedings of ACM SIGCOMM, San Diego, California, USA

    Google Scholar 

Download references

Acknowledgments

This work was carried out with the support of the CONTENT (FP7-ICT-318514) project funded by the EC through the 7th ICT Framework Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Tzanakaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tzanakaki, A. et al. (2017). Converged Wireless Access/Optical Metro Networks in Support of Cloud and Mobile Cloud Services Deploying SDN Principles. In: Tornatore, M., Chang, GK., Ellinas, G. (eds) Fiber-Wireless Convergence in Next-Generation Communication Networks. Optical Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-42822-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42822-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42820-8

  • Online ISBN: 978-3-319-42822-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics