Skip to main content

A Formal Proof of Cauchy’s Residue Theorem

  • Conference paper
  • First Online:
Interactive Theorem Proving (ITP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9807))

Included in the following conference series:

Abstract

We present a formalization of Cauchy’s residue theorem and two of its corollaries: the argument principle and Rouché’s theorem. These results have applications to verify algorithms in computer algebra and demonstrate Isabelle/HOL’s complex analysis library.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Source is available from https://bitbucket.org/liwenda1990/src_itp_2016/src.

  2. 2.

    Our formalization is based on a proof by Brosowski and Deutsch [7].

  3. 3.

    Holomorphic except for isolated poles.

  4. 4.

    The existence proof of such is ported from HOL Light, while we have shown the uniqueness of on our own.

  5. 5.

    Either the lemma or the lemma suffices in this place.

References

  1. Ahlfors, L.V.: Complex Analysis: An Introduction to the Theory of Analytic Funtions of One Complex Variable. McGraw-Hill, New York (1966)

    Google Scholar 

  2. Avigad, J., Hölzl, J., Serafin, L.: A formally verified proof of the central limit theorem. CoRR abs/1405.7012 (2014)

    Google Scholar 

  3. Bak, J., Newman, D.: Complex Analysis. Springer, New York (2010)

    Book  MATH  Google Scholar 

  4. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry, vol. 10. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  5. Boldo, S., Lelay, C., Melquiond, G.: Coquelicot: a user-friendly library of real analysis for Coq. Math. Comput. Sci. 9(1), 41–62 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brunel, A.: Non-constructive complex analysis in Coq. In: 18th International Workshop on Types for Proofs and Programs, TYPES 2011, Bergen, Norway, pp. 1–15, 8–11 September 2011

    Google Scholar 

  7. Bruno Brosowski, F.D.: An elementary proof of the Stone-Weierstrass theorem. Proc. Am. Math. Soc. 81(1), 89–92 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caviness, B., Johnson, J.: Quantifier Elimination and Cylindrical Algebraic Decomposition. Springer, New York (2012)

    Google Scholar 

  9. Conway, J.B.: Functions of One Complex Variable, vol. 11, 2nd edn. Springer, New York (1978)

    Book  Google Scholar 

  10. Cruz-Filipe, L., Geuvers, H., Wiedijk, F.: C-CoRN, the constructive Coq repository at Nijmegen. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 88–103. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Hales, T.C., Adams, M., Bauer, G., Dang, D.T., Harrison, J., Hoang, T.L., Kaliszyk, C., Magron, V., McLaughlin, S., Nguyen, T.T., Nguyen, T.Q., Nipkow, T., Obua, S., Pleso, J., Rute, J., Solovyev, A., Ta, A.H.T., Tran, T.N., Trieu, D.T., Urban, J., Vu, K.K., Zumkeller, R.: A formal proof of the Kepler conjecture. arXiv:1501.02155 (2015)

  12. Harrison, J.: Formalizing basic complex analysis. In: Matuszewski, R., Zalewska, A. (eds.) From Insight to Proof: Festschrift in Honour of Andrzej Trybulec, vol. 10(23), pp. 151–165. University of Białystok (2007)

    Google Scholar 

  13. Harrison, J.: Formalizing an analytic proof of the Prime Number Theorem (dedicated to Mike Gordon on the occasion of his 60th birthday). J. Autom. Reasoning 43, 243–261 (2009)

    Article  Google Scholar 

  14. Harrison, J.: The HOL light theory of Euclidean space. J. Autom. Reasoning 50, 173–190 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lang, S.: Complex Analysis. Springer, New York (1993)

    Book  MATH  Google Scholar 

  16. Stein, E.M., Shakarchi, R.: Complex Analysis, vol. 2. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to John Harrison for his insightful suggestions about mathematical formalization, and also to the anonymous reviewers for their useful comments on the first version of this paper. The first author was funded by the China Scholarship Council, via the CSC Cambridge Scholarship programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenda Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, W., Paulson, L.C. (2016). A Formal Proof of Cauchy’s Residue Theorem. In: Blanchette, J., Merz, S. (eds) Interactive Theorem Proving. ITP 2016. Lecture Notes in Computer Science(), vol 9807. Springer, Cham. https://doi.org/10.1007/978-3-319-43144-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43144-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43143-7

  • Online ISBN: 978-3-319-43144-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics