Skip to main content

Luteolysis in Ruminants: Past Concepts, New Insights, and Persisting Challenges

  • Chapter
  • First Online:
The Life Cycle of the Corpus Luteum

Abstract

It is well established that in ruminants, and in other species with estrous cycles, luteal regression is stimulated by the episodic release of prostaglandin F2α (PGF2α) from the uterus, which reaches the corpus luteum (CL) through a countercurrent system between the uterine vein and the ovarian artery. Because of their luteolytic properties, PGF2α and its analogues are routinely administered to induce CL regression and synchronization of estrus, and as such, it is the basis of protocols for synchronizing ovulation. Luteal regression is defined as the loss of steroidogenic function (functional luteolysis) and the subsequent involution of the CL (structural luteolysis). During luteolysis, the CL undergoes dramatic changes in its steroidogenic capacity, vascularization, immune cell activation, ECM composition, and cell viability. Functional genomics and many other studies during the past 20 years elucidated the mechanism underlying PGF2α actions, substantially revising old concepts. PGF2α acts directly on luteal steroidogenic and endothelial cells, which express PGF2α receptors (PTGFR), or indirectly on immune cells lacking PTGFR, which can be activated by other cells within the CL. Accumulating evidence now indicates that the diverse processes initiated by uterine or exogenous PGF2α, ranging from reduction of steroid production to apoptotic cell death, are mediated by locally produced factors. Data summarized here show that PGF2α stimulates luteal steroidogenic and endothelial cells to produce factors such as endothelin-1, angiopoietins, nitric oxide, fibroblast growth factor 2, thrombospondins, transforming growth factor-B1, and plasminogen activator inhibitor-B1, which act sequentially to inhibit progesterone production, angiogenic support, cell survival, and ECM remodeling to accomplish CL regression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Melampy RM, Anderson LL. Role of the uterus in corpus luteum function. J Anim Sci. 1968;27 suppl 1:77–96.

    PubMed  Google Scholar 

  2. Wiltbank JN, Casida LE. Alteration of ovarian activity by hysterectomy. J Anim Sci. 1956; 5(1):134–40.

    Google Scholar 

  3. Baird DT, Goding JR, Ichikawa Y, McCracken JA. The secretion of steroids from the autotransplanted ovary in the ewe spontaneously and in response to systemic gonadotropin. J Endocrinol. 1968;42(2):283–99.

    Article  CAS  PubMed  Google Scholar 

  4. Moor RM, Hay MF, Short RV, Rowson LE. The corpus luteum of the sheep: effect of uterine removal during luteal regression. J Reprod Fertil. 1970;21(2):319–26.

    Article  CAS  PubMed  Google Scholar 

  5. Lukaszewska JH, Hansel W. Extraction and partial purification of luteolytic activity from bovine endometrial tissue. Endocrinology. 1970;86(2):261–70.

    Article  CAS  PubMed  Google Scholar 

  6. Pharriss BB, Wyngarden LJ. The effect of prostaglandin F 2alpha on the progestogen content of ovaries from pseudopregnant rats. Proc Soc Exp Biol Med. 1969;130(1):92–4.

    Article  CAS  PubMed  Google Scholar 

  7. McCracken JA, Glew ME, Scaramuzzi RJ. Corpus luteum regression induced by prostaglandin F2-alpha. J Clin Endocrinol Metab. 1970;30(4):544–6.

    Article  CAS  PubMed  Google Scholar 

  8. McCracken JA, Baird DT, Carlson JC, Goding JR, Barcikowski B. The role of prostaglandins in luteal regression. J Reprod Fertil Suppl. 1973;18:133–42.

    CAS  PubMed  Google Scholar 

  9. Kindahl H, Edqvist LE, Granstrom E, Bane A. The release of prostaglandin F2alpha as reflected by 15-keto-13,14-dihydroprostaglandin F2alpha in the peripheral circulation during normal luteolysis in heifers. Prostaglandins. 1976;11(5):871–8.

    Article  CAS  PubMed  Google Scholar 

  10. Atli MO, Bender RW, Mehta V, Bastos MR, Luo W, Vezina CM, et al. Patterns of gene expression in the bovine corpus luteum following repeated intrauterine infusions of low doses of prostaglandin F2alpha. Biol Reprod. 2012;86(4):130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Mondal M, Schilling B, Folger J, Steibel JP, Buchnick H, Zalman Y, et al. Deciphering the luteal transcriptome: potential mechanisms mediating stage-specific luteolytic response of the corpus luteum to prostaglandin F(2)alpha. Physiol Genomics. 2011;43(8):447–56.

    Article  CAS  PubMed  Google Scholar 

  12. McCracken JA, Custer EE, Schreiber DT, Tsang PC, Keator CS, Arosh JA. A new in vivo model for luteolysis using systemic pulsatile infusions of PGF(2alpha). Prostaglandins Other Lipid Mediat. 2012;97(3-4):90–6.

    Article  CAS  PubMed  Google Scholar 

  13. Lee J, McCracken JA, Banu SK, Rodriguez R, Nithy TK, Arosh JA. Transport of prostaglandin F(2alpha) pulses from the uterus to the ovary at the time of luteolysis in ruminants is regulated by prostaglandin transporter-mediated mechanisms. Endocrinology. 2010;151(7):3326–35.

    Article  CAS  PubMed  Google Scholar 

  14. Arosh JA, Banu SK, Chapdelaine P, Madore E, Sirois J, Fortier MA. Prostaglandin biosynthesis, transport, and signaling in corpus luteum: a basis for autoregulation of luteal function. Endocrinology. 2004;145(5):2551–60.

    Article  CAS  PubMed  Google Scholar 

  15. Hayashi K, Miyamoto A, Konari A, Ohtani M, Fukui Y. Effect of local interaction of reactive oxygen species with prostaglandin F(2alpha) on the release of progesterone in ovine corpora lutea in vivo. Theriogenology. 2003;59(5-6):1335–44.

    Article  CAS  PubMed  Google Scholar 

  16. Lee J, McCracken JA, Stanley JA, Nithy TK, Banu SK, Arosh JA. Intraluteal prostaglandin biosynthesis and signaling are selectively directed towards PGF2alpha during luteolysis but towards PGE2 during the establishment of pregnancy in sheep. Biol Reprod. 2012;87(4):97.

    Article  PubMed  CAS  Google Scholar 

  17. Wiltbank MC, Ottobre JS. Regulation of intraluteal production of prostaglandins. Reprod Biol Endocrinol. 2003;1:91.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hansel W, Convey EM. Physiology of the estrous cycle. J Anim Sci. 1983;57 suppl 2:404–24.

    CAS  PubMed  Google Scholar 

  19. Auletta FJ, Flint AP. Mechanisms controlling corpus luteum function in sheep, cows, nonhuman primates, and women especially in relation to the time of luteolysis. Endocr Rev. 1988;9(1):88–105.

    Article  CAS  PubMed  Google Scholar 

  20. Hansel W, Hickey GJ. Early pregnancy signals in domestic animals. Ann N Y Acad Sci. 1988;541:472–84.

    Article  CAS  PubMed  Google Scholar 

  21. Spencer TE, Bazer FW. Conceptus signals for establishment and maintenance of pregnancy. Reprod Biol Endocrinol. 2004;2:49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Schams D, Berisha B. Regulation of corpus luteum function in cattle: an overview. Reprod Domestic Anim. 2004;39(4):241–51.

    Article  CAS  Google Scholar 

  23. Miyamoto A, Shirasuna K, Shimizu T, Bollwein H, Schams D. Regulation of corpus luteum development and maintenance: specific roles of angiogenesis and action of prostaglandin F2alpha. Soc Reprod Fertil Suppl. 2010;67:289–304.

    CAS  PubMed  Google Scholar 

  24. Meidan R, Milvae RA, Weiss S, Levy N, Friedman A. Intraovarian regulation of luteolysis. J Reprod Fertil Suppl. 1999;54:217–28.

    CAS  PubMed  Google Scholar 

  25. Braun NS, Heath E, Chenault JR, Shanks RD, Hixon JE. Effects of prostaglandin F2 alpha on degranulation of bovine luteal cells on days 4 and 12 of the estrous cycle. Am J Vet Res. 1988;49(4):516–9.

    CAS  PubMed  Google Scholar 

  26. Pursley JR, Mee MO, Wiltbank MC. Synchronization of ovulation in dairy cows using PGF2alpha and GnRH. Theriogenology. 1995;44(7):915–23.

    Article  CAS  PubMed  Google Scholar 

  27. Tsai SJ, Wiltbank MC. Prostaglandin F2alpha regulates distinct physiological changes in early and mid-cycle bovine corpora lutea. Biol Reprod. 1998;58(2):346–52.

    Article  CAS  PubMed  Google Scholar 

  28. Levy N, Kobayashi S, Roth Z, Wolfenson D, Miyamoto A, Meidan R. Administration of prostaglandin F(2 alpha) during the early bovine luteal phase does not alter the expression of ET-1 and of its type A receptor: a possible cause for corpus luteum refractoriness. Biol Reprod. 2000;63(2):377–82.

    Article  CAS  PubMed  Google Scholar 

  29. Zalman Y, Klipper E, Farberov S, Mondal M, Wee G, Folger JK, et al. Regulation of angiogenesis-related prostaglandin F2alpha-induced genes in the bovine corpus luteum. Biol Reprod. 2012;86(3):92.

    Article  PubMed  CAS  Google Scholar 

  30. Summers PM, Wennink CJ, Hodges JK. Cloprostenol-induced luteolysis in the marmoset monkey (Callithrix jacchus). J Reprod Fertil. 1985;73(1):133–8.

    Article  CAS  PubMed  Google Scholar 

  31. Wright K, Pang CY, Behrman HR. Luteal membrane binding of prostaglandin F2 alpha and sensitivity of corpora lutea to prostaglandin F2 alpha-induced luteolysis in pseudopregnant rats. Endocrinology. 1980;106(5):1333–7.

    Article  CAS  PubMed  Google Scholar 

  32. Garverick HA, Smith MF, Elmore RG, Morehouse GL, Agudo LS, Zahler WL. Changes and interrelationships among luteal LH receptors, adenylate cyclase activity and phosphodiesterase activity during the bovine estrous cycle. J Anim Sci. 1985;61(1):216–23.

    Article  CAS  PubMed  Google Scholar 

  33. Niswender GD, Juengel JL, Silva PJ, Rollyson MK, McIntush EW. Mechanisms controlling the function and life span of the corpus luteum. Physiol Rev. 2000;80(1):1–29.

    CAS  PubMed  Google Scholar 

  34. Wiltbank MC, Diskin MG, Flores JA, Niswender GD. Regulation of the corpus luteum by protein kinase C. II. Inhibition of lipoprotein-stimulated steroidogenesis by prostaglandin F2 alpha. Biol Reprod. 1990;42(2):239–45.

    Article  CAS  PubMed  Google Scholar 

  35. Pate JL, Nephew KP. Effects of in vivo and in vitro administration of prostaglandin F2 alpha on lipoprotein utilization in cultured bovine luteal cells. Biol Reprod. 1988;38(3):568–76.

    Article  CAS  PubMed  Google Scholar 

  36. Wiltbank MC, Diskin MG, Niswender GD. Differential actions of second messenger systems in the corpus luteum. J Reprod Fertil Suppl. 1991;43:65–75.

    CAS  PubMed  Google Scholar 

  37. Knickerbocker JJ, Wiltbank MC, Niswender GD. Mechanisms of luteolysis in domestic livestock. Domestic Anim Endocrinol. 1988;5(2):91–107.

    Article  CAS  Google Scholar 

  38. Davis JS, Alila HW, West LA, Corradino RA, Weakland LL, Hansel W. Second messenger systems and progesterone secretion in the small cells of the bovine corpus luteum: effects of gonadotropins and prostaglandin F2a. J Steroid Biochem. 1989;32(5):643–9.

    Article  CAS  PubMed  Google Scholar 

  39. Girsh E, Greber Y, Meidan R. Luteotrophic and luteolytic interactions between bovine small and large luteal-like cells and endothelial cells. Biol Reprod. 1995;52(4):954–62.

    Article  CAS  PubMed  Google Scholar 

  40. Mamluk R, Defer N, Hanoune J, Meidan R. Molecular identification of adenylyl cyclase 3 in bovine corpus luteum and its regulation by prostaglandin F2alpha-induced signaling pathways. Endocrinology. 1999;140(10):4601–8.

    CAS  PubMed  Google Scholar 

  41. Miyamoto A, von Lutzow H, Schams D. Acute actions of prostaglandin F2 alpha, E2, and I2 in microdialyzed bovine corpus luteum in vitro. Biol Reprod. 1993;49(2):423–30.

    Article  CAS  PubMed  Google Scholar 

  42. Pate JL, Condon WA. Effects of prostaglandin F2 alpha on agonist-induced progesterone production in cultured bovine luteal cells. Biol Reprod. 1984;31(3):427–35.

    Article  CAS  PubMed  Google Scholar 

  43. Tsai SJ, Wiltbank MC. Differential effects of prostaglandin F2alpha on in vitro luteinized bovine granulosa cells. Reproduction. 2001;122(2):245–53.

    Article  CAS  PubMed  Google Scholar 

  44. Meidan R, Girsh E, Blum O, Aberdam E. In vitro differentiation of bovine theca and granulosa cells into small and large luteal-like cells: morphological and functional characteristics. Biol Reprod. 1990;43(6):913–21.

    Article  CAS  PubMed  Google Scholar 

  45. Shirasuna K, Akabane Y, Beindorff N, Nagai K, Sasaki M, Shimizu T, et al. Expression of prostaglandin F2alpha (PGF2alpha) receptor and its isoforms in the bovine corpus luteum during the estrous cycle and PGF2alpha-induced luteolysis. Domestic Anim Endocrinol. 2012;43(3):227–38.

    Article  CAS  Google Scholar 

  46. Lee SH, Acosta TJ, Yoshioka S, Okuda K. Prostaglandin F(2alpha) regulates the nitric oxide generating system in bovine luteal endothelial cells. J Reprod Dev. 2009;55(4):418–24.

    Article  CAS  PubMed  Google Scholar 

  47. Zannoni A, Bernardini C, Rada T, Ribeiro LA, Forni M, Bacci ML. Prostaglandin F2-alpha receptor (FPr) expression on porcine corpus luteum microvascular endothelial cells (pCL-MVECs). Reprod Biol Endocrinol. 2007;5:31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Mukhopadhyay P, Bian L, Yin H, Bhattacherjee P, Paterson C. Localization of EP(1) and FP receptors in human ocular tissues by in situ hybridization. Invest Ophthalmol Vis Sci. 2001;42(2):424–8.

    CAS  PubMed  Google Scholar 

  49. Sales KJ, List T, Boddy SC, Williams AR, Anderson RA, Naor Z, et al. A novel angiogenic role for prostaglandin F2alpha-FP receptor interaction in human endometrial adenocarcinomas. Cancer Res. 2005;65(17):7707–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Robinson RS, Woad KJ, Hammond AJ, Laird M, Hunter MG, Mann GE. Angiogenesis and vascular function in the ovary. Reproduction. 2009;138(6):869–81.

    Article  CAS  PubMed  Google Scholar 

  51. Wulff C, Wilson H, Largue P, Duncan WC, Armstrong DG, Fraser HM. Angiogenesis in the human corpus luteum: localization and changes in angiopoietins, tie-2, and vascular endothelial growth factor messenger ribonucleic acid. J Clin Endocrinol Metab. 2000;85(11):4302–9.

    CAS  PubMed  Google Scholar 

  52. O’Shea JD, Rodgers RJ, D’Occhio MJ. Cellular composition of the cyclic corpus luteum of the cow. J Reprod Fertil. 1989;85(2):483–7.

    Article  PubMed  Google Scholar 

  53. Zheng J, Redmer DA, Reynolds LP. Vascular development and heparin-binding growth factors in the bovine corpus luteum at several stages of the estrous cycle. Biol Reprod. 1993;49(6):1177–89.

    Article  CAS  PubMed  Google Scholar 

  54. Inagami T, Naruse M, Hoover R. Endothelium as an endocrine organ. Annu Rev Physiol. 1995;57:171–89.

    Article  CAS  PubMed  Google Scholar 

  55. Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol. 2001;230(2):230–42.

    Article  CAS  PubMed  Google Scholar 

  56. Goede V, Schmidt T, Kimmina S, Kozian D, Augustin HG. Analysis of blood vessel maturation processes during cyclic ovarian angiogenesis. Lab Invest. 1998;78(11):1385–94.

    CAS  PubMed  Google Scholar 

  57. Girsh E, Wang W, Mamluk R, Arditi F, Friedman A, Milvae RA, et al. Regulation of endothelin-1 expression in the bovine corpus luteum: elevation by prostaglandin F2 alpha. Endocrinology. 1996;137(12):5191–6.

    CAS  PubMed  Google Scholar 

  58. Ohtani M, Kobayashi S, Miyamoto A, Hayashi K, Fukui Y. Real-time relationships between intraluteal and plasma concentrations of endothelin, oxytocin, and progesterone during prostaglandin F2alpha-induced luteolysis in the cow. Biol Reprod. 1998;58(1):103–8.

    Article  CAS  PubMed  Google Scholar 

  59. Meidan R, Levy N. Endothelin-1 receptors and biosynthesis in the corpus luteum: molecular and physiological implications. Domestic Anim Endocrinol. 2002;23(1-2):287–98.

    Article  CAS  Google Scholar 

  60. Meidan R, Levy N. The ovarian endothelin network: an evolving story. Trends Endocrinol Metab. 2007;18(10):379–85.

    Article  CAS  PubMed  Google Scholar 

  61. Hinckley ST, Milvae RA. Endothelin-1 mediates prostaglandin F(2alpha)-induced luteal regression in the ewe. Biol Reprod. 2001;64(6):1619–23.

    Article  CAS  PubMed  Google Scholar 

  62. Girsh E, Milvae RA, Wang W, Meidan R. Effect of endothelin-1 on bovine luteal cell function: role in prostaglandin F2alpha-induced antisteroidogenic action. Endocrinology. 1996;137(4):1306–12.

    CAS  PubMed  Google Scholar 

  63. Shirasuna K, Watanabe S, Oki N, Wijayagunawardane MP, Matsui M, Ohtani M, et al. A cooperative action of endothelin-1 with prostaglandin F(2alpha) on luteal function in the cow. Domestic Anim Endocrinol. 2006;31(2):186–96.

    Article  CAS  Google Scholar 

  64. Watanabe S, Shirasuna K, Matsui M, Yamamoto D, Berisha B, Schams D, et al. Effect of intraluteal injection of endothelin type A receptor antagonist on PGF2alpha-induced luteolysis in the cow. J Reprod Dev. 2006;52(4):551–9.

    Article  CAS  PubMed  Google Scholar 

  65. van Ginneken AM, van der Lei J. Understanding differential diagnostic disagreement in pathology. Proc Annu Symp Comput Appl Med Care. 1991;99–103.

    Google Scholar 

  66. Ahmed A, Fujisawa T. Multiple roles of angiopoietins in atherogenesis. Curr Opin Lipidol. 2011;22(5):380–5.

    Article  CAS  PubMed  Google Scholar 

  67. Miyamoto A, Shirasuna K, Sasahara K. Local regulation of corpus luteum development and regression in the cow: Impact of angiogenic and vasoactive factors. Domestic Anim Endocrinol. 2009;37(3):159–69.

    Article  CAS  Google Scholar 

  68. Hazzard TM, Christenson LK, Stouffer RL. Changes in expression of vascular endothelial growth factor and angiopoietin-1 and -2 in the macaque corpus luteum during the menstrual cycle. Mol Hum Reprod. 2000;6(11):993–8.

    Article  CAS  PubMed  Google Scholar 

  69. Tanaka J, Acosta TJ, Berisha B, Tetsuka M, Matsui M, Kobayashi S, et al. Relative changes in mRNA expression of angiopoietins and receptors tie in bovine corpus luteum during estrous cycle and prostaglandin F2alpha-induced luteolysis: a possible mechanism for the initiation of luteal regression. J Reprod Dev. 2004;50(6):619–26.

    Article  CAS  PubMed  Google Scholar 

  70. Vonnahme KA, Redmer DA, Borowczyk E, Bilski JJ, Luther JS, Johnson ML, et al. Vascular composition, apoptosis, and expression of angiogenic factors in the corpus luteum during prostaglandin F2alpha-induced regression in sheep. Reproduction. 2006;131(6):1115–26.

    Article  CAS  PubMed  Google Scholar 

  71. Mai J, Virtue A, Shen J, Wang H, Yang XF. An evolving new paradigm: endothelial cells: conditional innate immune cells. J Hematol Oncol. 2013;6:61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Danese S, Dejana E, Fiocchi C. Immune regulation by microvascular endothelial cells: directing innate and adaptive immunity, coagulation, and inflammation. J Immunol. 2007;178(10):6017–22.

    Article  CAS  PubMed  Google Scholar 

  73. Smith GW, Meidan R. Ever-changing cell interactions during the life span of the corpus luteum: relevance to luteal regression. Reprod Biol. 2014;14(2):75–82.

    Article  PubMed  Google Scholar 

  74. Bauer M, Reibiger I, Spanel-Borowski K. Leucocyte proliferation in the bovine corpus luteum. Reproduction. 2001;121(2):297–305.

    Article  CAS  PubMed  Google Scholar 

  75. Townson DH, O’Connor CL, Pru JK. Expression of monocyte chemoattractant protein-1 and distribution of immune cell populations in the bovine corpus luteum throughout the estrous cycle. Biol Reprod. 2002;66(2):361–6.

    Article  CAS  PubMed  Google Scholar 

  76. Liptak AR, Sullivan BT, Henkes LE, Wijayagunawardane MP, Miyamoto A, Davis JS, et al. Cooperative expression of monocyte chemoattractant protein 1 within the bovine corpus luteum: evidence of immune cell-endothelial cell interactions in a coculture system. Biol Reprod. 2005;72(5):1169–76.

    Article  CAS  PubMed  Google Scholar 

  77. Cannon MJ, Davis JS, Pate JL. The class II major histocompatibility complex molecule BoLA-DR is expressed by endothelial cells of the bovine corpus luteum. Reproduction. 2007;133(5):991–1003.

    Article  CAS  PubMed  Google Scholar 

  78. Cannon MJ, Davis JS, Pate JL. Expression of costimulatory molecules in the bovine corpus luteum. Reprod Biol Endocrinol. 2007;5:5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Mamluk R, Chen D, Greber Y, Davis JS, Meidan R. Characterization of messenger ribonucleic acid expression for prostaglandin F2 alpha and luteinizing hormone receptors in various bovine luteal cell types. Biol Reprod. 1998;58(3):849–56.

    Article  CAS  PubMed  Google Scholar 

  80. Tsai SJ, Juengel JL, Wiltbank MC. Hormonal regulation of monocyte chemoattractant protein-1 messenger ribonucleic acid expression in corpora lutea. Endocrinology. 1997;138(10):4517–20.

    Article  CAS  PubMed  Google Scholar 

  81. Bowen JM, Towns R, Warren JS, Landis KP. Luteal regression in the normally cycling rat: apoptosis, monocyte chemoattractant protein-1, and inflammatory cell involvement. Biol Reprod. 1999;60(3):740–6.

    Article  CAS  PubMed  Google Scholar 

  82. Cheng Q, Fan H, Ngo D, Beaulieu E, Leung P, Lo CY, et al. GILZ overexpression inhibits endothelial cell adhesive function through regulation of NF-kappaB and MAPK activity. J Immunol. 2013;191(1):424–33.

    Article  CAS  PubMed  Google Scholar 

  83. Nio-Kobayashi J, Kudo M, Sakuragi N, Kimura S, Iwanaga T, Duncan WC. Regulated C-C motif ligand 2 (CCL2) in luteal cells contributes to macrophage infiltration into the human corpus luteum during luteolysis. Mol Hum Reprod. 2015;21(8):645–54.

    Article  PubMed  Google Scholar 

  84. Penny LA. Monocyte chemoattractant protein 1 in luteolysis. Rev Reprod. 2000;5(2):63–6.

    Article  CAS  PubMed  Google Scholar 

  85. Senturk LM, Seli E, Gutierrez LS, Mor G, Zeyneloglu HB, Arici A. Monocyte chemotactic protein-1 expression in human corpus luteum. Mol Hum Reprod. 1999;5(8):697–702.

    Article  CAS  PubMed  Google Scholar 

  86. Townson DH, Warren JS, Flory CM, Naftalin DM, Keyes PL. Expression of monocyte chemoattractant protein-1 in the corpus luteum of the rat. Biol Reprod. 1996;54(2):513–20.

    Article  CAS  PubMed  Google Scholar 

  87. Shirasuna K, Watanabe S, Asahi T, Wijayagunawardane MP, Sasahara K, Jiang C, et al. Prostaglandin F2alpha increases endothelial nitric oxide synthase in the periphery of the bovine corpus luteum: the possible regulation of blood flow at an early stage of luteolysis. Reproduction. 2008;135(4):527–39.

    Article  CAS  PubMed  Google Scholar 

  88. Miyamoto A, Shirasuna K, Wijayagunawardane MP, Watanabe S, Hayashi M, Yamamoto D, et al. Blood flow: a key regulatory component of corpus luteum function in the cow. Domestic Anim Endocrinol. 2005;29(2):329–39.

    Article  CAS  Google Scholar 

  89. Shirasuna K, Sasahara K, Matsui M, Shimizu T, Miyamoto A. Prostaglandin F2alpha differentially affects mRNA expression relating to angiogenesis, vasoactivation and prostaglandins in the early and mid corpus luteum in the cow. J Reprod Dev. 2010;56(4):428–36.

    Article  CAS  PubMed  Google Scholar 

  90. Neuvians TP, Schams D, Berisha B, Pfaffl MW. Involvement of pro-inflammatory cytokines, mediators of inflammation, and basic fibroblast growth factor in prostaglandin F2alpha-induced luteolysis in bovine corpus luteum. Biol Reprod. 2004;70(2):473–80.

    Article  CAS  PubMed  Google Scholar 

  91. Leali D, Alessi P, Coltrini D, Rusnati M, Zetta L, Presta M. Fibroblast growth factor-2 antagonist and antiangiogenic activity of long-pentraxin 3-derived synthetic peptides. Curr Pharm Des. 2009;15(30):3577–89.

    Article  CAS  PubMed  Google Scholar 

  92. Langenkamp E, Molema G. Microvascular endothelial cell heterogeneity: general concepts and pharmacological consequences for anti-angiogenic therapy of cancer. Cell Tissue Res. 2009;335(1):205–22.

    Article  CAS  PubMed  Google Scholar 

  93. Presta M, Camozzi M, Salvatori G, Rusnati M. Role of the soluble pattern recognition receptor PTX3 in vascular biology. J Cell Mol Med. 2007;11(4):723–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ronca R, Giacomini A, Di Salle E, Coltrini D, Pagano K, Ragona L, et al. Long-pentraxin 3 derivative as a small-molecule FGF trap for cancer therapy. Cancer Cell. 2015;28(2):225–39.

    Article  CAS  PubMed  Google Scholar 

  95. Camozzi M, Zacchigna S, Rusnati M, Coltrini D, Ramirez-Correa G, Bottazzi B, et al. Pentraxin 3 inhibits fibroblast growth factor 2-dependent activation of smooth muscle cells in vitro and neointima formation in vivo. Arterioscler Thromb Vasc Biol. 2005;25(9):1837–42.

    Article  CAS  PubMed  Google Scholar 

  96. Lawler J. The functions of thrombospondin-1 and -2. Curr Opin Cell Biol. 2000;12(5):634–40.

    Article  CAS  PubMed  Google Scholar 

  97. Bornstein P. Thrombospondins as matricellular modulators of cell function. J Clin Invest. 2001;107(8):929–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mirochnik Y, Kwiatek A, Volpert OV. Thrombospondin and apoptosis: molecular mechanisms and use for design of complementation treatments. Curr Drug Targets. 2008;9(10):851–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Campbell NE, Greenaway J, Henkin J, Moorehead RA, Petrik J. The thrombospondin-1 mimetic ABT-510 increases the uptake and effectiveness of cisplatin and paclitaxel in a mouse model of epithelial ovarian cancer. Neoplasia. 2010;12(3):275–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Garside SA, Henkin J, Morris KD, Norvell SM, Thomas FH, Fraser HM. A thrombospondin-mimetic peptide, ABT-898, suppresses angiogenesis and promotes follicular atresia in pre- and early-antral follicles in vivo. Endocrinology. 2010;151(12):5905–15.

    Article  CAS  PubMed  Google Scholar 

  101. Colombo G, Margosio B, Ragona L, Neves M, Bonifacio S, Annis DS, et al. Non-peptidic thrombospondin-1 mimics as fibroblast growth factor-2 inhibitors: an integrated strategy for the development of new antiangiogenic compounds. J Biol Chem. 2010;285(12):8733–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Farberov S, Meidan R. Functions and transcriptional regulation of thrombospondins and their interrelationship with fibroblast growth factor-2 in bovine luteal cells. Biol Reprod. 2014;91(3):58.

    Article  PubMed  CAS  Google Scholar 

  103. Farberov S, Meidan R. Thrombospondin-1 affects bovine luteal function via transforming growth factor-beta1-dependent and independent actions. Biol Reprod. 2016;94(1):25.

    Article  PubMed  Google Scholar 

  104. Maroni D, Davis JS. TGFB1 disrupts the angiogenic potential of microvascular endothelial cells of the corpus luteum. J Cell Sci. 2011;124(pt 14):2501–10.

    Article  CAS  PubMed  Google Scholar 

  105. Hou X, Arvisais EW, Jiang C, Chen DB, Roy SK, Pate JL, et al. Prostaglandin F2alpha stimulates the expression and secretion of transforming growth factor B1 via induction of the early growth response 1 gene (EGR1) in the bovine corpus luteum. Mol Endocrinol. 2008;22(2):403–14.

    Article  CAS  PubMed  Google Scholar 

  106. Woad KJ, Hammond AJ, Hunter M, Mann GE, Hunter MG, Robinson RS. FGF2 is crucial for the development of bovine luteal endothelial networks in vitro. Reproduction. 2009;138(3):581–8.

    Article  CAS  PubMed  Google Scholar 

  107. Yamashita H, Kamada D, Shirasuna K, Matsui M, Shimizu T, Kida K, et al. Effect of local neutralization of basic fibroblast growth factor or vascular endothelial growth factor by a specific antibody on the development of the corpus luteum in the cow. Mol Reprod Dev. 2008;75(9):1449–56.

    Article  CAS  PubMed  Google Scholar 

  108. Grasselli F, Basini G, Bussolati S, Tamanini C. Effects of VEGF and bFGF on proliferation and production of steroids and nitric oxide in porcine granulosa cells. Reprod Domestic Anim. 2002;37(6):362–8.

    Article  CAS  Google Scholar 

  109. Kliem H, Welter H, Kraetzl WD, Steffl M, Meyer HH, Schams D, et al. Expression and localisation of extracellular matrix degrading proteases and their inhibitors during the oestrous cycle and after induced luteolysis in the bovine corpus luteum. Reproduction. 2007;134(3):535–47.

    Article  CAS  PubMed  Google Scholar 

  110. Ribeiro LA, Turba ME, Zannoni A, Bacci ML, Forni M. Gelatinases, endonuclease and vascular endothelial growth factor during development and regression of swine luteal tissue. BMC Dev Biol. 2006;6:58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Ricke WA, Smith GW, Smith MF. Matrix metalloproteinase expression and activity following prostaglandin F(2 alpha)-induced luteolysis. Biol Reprod. 2002;66(3):685–91.

    Article  CAS  PubMed  Google Scholar 

  112. Towle TA, Tsang PC, Milvae RA, Newbury MK, McCracken JA. Dynamic in vivo changes in tissue inhibitors of metalloproteinases 1 and 2, and matrix metalloproteinases 2 and 9, during prostaglandin F(2alpha)-induced luteolysis in sheep. Biol Reprod. 2002;66(5):1515–21.

    Article  CAS  PubMed  Google Scholar 

  113. Smith MF, McIntush EW, Ricke WA, Kojima FN, Smith GW. Regulation of ovarian extracellular matrix remodelling by metalloproteinases and their tissue inhibitors: effects on follicular development, ovulation and luteal function. J Reprod Fertil Suppl. 1999;54:367–81.

    CAS  PubMed  Google Scholar 

  114. Smith GW, Gentry PC, Bao B, Long DK, Roberts RM, Smith MF. Control of extracellular matrix remodelling within ovarian tissues: localization and regulation of gene expression of plasminogen activator inhibitor type-1 within the ovine corpus luteum. J Reprod Fertil. 1997;110(1):107–14.

    Article  CAS  PubMed  Google Scholar 

  115. Liu K, Feng Q, Gao HJ, Hu ZY, Zou RJ, Li YC, et al. Expression and regulation of plasminogen activators, plasminogen activator inhibitor type-1, and steroidogenic acute regulatory protein in the rhesus monkey corpus luteum. Endocrinology. 2003;144(8):3611–7.

    Article  CAS  PubMed  Google Scholar 

  116. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature (Lond). 2003;425(6958):577–84.

    Article  CAS  Google Scholar 

  117. Boehm JR, Kutz SM, Sage EH, Staiano-Coico L, Higgins PJ. Growth state-dependent regulation of plasminogen activator inhibitor type-1 gene expression during epithelial cell stimulation by serum and transforming growth factor-beta1. J Cell Physiol. 1999;181(1):96–106.

    Article  CAS  PubMed  Google Scholar 

  118. Mucsi I, Skorecki KL, Goldberg HJ. Extracellular signal-regulated kinase and the small GTP-binding protein, Rac, contribute to the effects of transforming growth factor-beta1 on gene expression. J Biol Chem. 1996;271(28):16567–72.

    Article  CAS  PubMed  Google Scholar 

  119. Romero JJ, Antoniazzi AQ, Smirnova NP, Webb BT, Yu F, Davis JS, et al. Pregnancy-associated genes contribute to antiluteolytic mechanisms in ovine corpus luteum. Physiol Genomics. 2013;45(22):1095–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Buduneli N, Buduneli E, Ciotanar S, Atilla G, Lappin D, Kinane D. Plasminogen activators and plasminogen activator inhibitors in gingival crevicular fluid of cyclosporin A-treated patients. J Clin Periodontol. 2004;31(7):556–61.

    Article  CAS  PubMed  Google Scholar 

  121. Chorostowska-Wynimko J, Swiercz R, Skrzypczak-Jankun E, Wojtowicz A, Selman SH, Jankun J. A novel form of the plasminogen activator inhibitor created by cysteine mutations extends its half-life: relevance to cancer and angiogenesis. Mol Cancer Ther. 2003;2(1):19–28.

    Article  CAS  PubMed  Google Scholar 

  122. Chow KM, Szeto CC, Szeto CY, Poon P, Lai FM, Li PK. Plasminogen activator inhibitor-1 polymorphism is associated with progressive renal dysfunction after acute rejection in renal transplant recipients. Transplantation. 2002;74(12):1791–4.

    Article  CAS  PubMed  Google Scholar 

  123. Higgins PJ, Slack JK, Diegelmann RF, Staiano-Coico L. Differential regulation of PAI-1 gene expression in human fibroblasts predisposed to a fibrotic phenotype. Exp Cell Res. 1999;248(2):634–42.

    Article  CAS  PubMed  Google Scholar 

  124. Tuan TL, Wu H, Huang EY, Chong SS, Laug W, Messadi D, et al. Increased plasminogen activator inhibitor-1 in keloid fibroblasts may account for their elevated collagen accumulation in fibrin gel cultures. Am J Pathol. 2003;162(5):1579–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ghosh AK, Vaughan DE. PAI-1 in tissue fibrosis. J Cell Physiol. 2012;227(2):493–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sid B, Sartelet H, Bellon G, El Btaouri H, Rath G, Delorme N, et al. Thrombospondin 1: a multifunctional protein implicated in the regulation of tumor growth. Crit Rev Oncol Hematol. 2004;49(3):245–58.

    Article  CAS  PubMed  Google Scholar 

  127. Juengel JL, Garverick HA, Johnson AL, Youngquist RS, Smith MF. Apoptosis during luteal regression in cattle. Endocrinology. 1993;132(1):249–54.

    CAS  PubMed  Google Scholar 

  128. Davis JS, Rueda BR. The corpus luteum: an ovarian structure with maternal instincts and suicidal tendencies. Front Biosci. 2002;7:d1949–78.

    Article  CAS  PubMed  Google Scholar 

  129. Yadav VK, Sudhagar RR, Medhamurthy R. Apoptosis during spontaneous and prostaglandin F(2alpha)-induced luteal regression in the buffalo cow (Bubalus bubalis): involvement of mitogen-activated protein kinases. Biol Reprod. 2002;67(3):752–9.

    Article  CAS  PubMed  Google Scholar 

  130. Diaz FJ, Luo W, Wiltbank MC. Prostaglandin F2alpha regulation of mRNA for activating protein 1 transcriptional factors in porcine corpora lutea (CL): lack of induction of JUN and JUND in CL without luteolytic capacity. Domestic Anim Endocrinol. 2013;44(2):98–108.

    Article  CAS  Google Scholar 

  131. Carambula SF, Matikainen T, Lynch MP, Flavell RA, Goncalves PB, Tilly JL, et al. Caspase-3 is a pivotal mediator of apoptosis during regression of the ovarian corpus luteum. Endocrinology. 2002;143(4):1495–501.

    Article  CAS  PubMed  Google Scholar 

  132. Slot KA, Voorendt M, de Boer-Brouwer M, van Vugt HH, Teerds KJ. Estrous cycle dependent changes in expression and distribution of Fas, Fas ligand, Bcl-2, Bax, and pro- and active caspase-3 in the rat ovary. J Endocrinol. 2006;188(2):179–92.

    Article  CAS  PubMed  Google Scholar 

  133. Peluffo MC, Young KA, Stouffer RL. Dynamic expression of caspase-2, -3, -8, and -9 proteins and enzyme activity, but not messenger ribonucleic acid, in the monkey corpus luteum during the menstrual cycle. J Clin Endocrinol Metab. 2005;90(4):2327–35.

    Article  CAS  PubMed  Google Scholar 

  134. Yadav VK, Lakshmi G, Medhamurthy R. Prostaglandin F2alpha-mediated activation of apoptotic signaling cascades in the corpus luteum during apoptosis: involvement of caspase-activated DNase. J Biol Chem. 2005;280(11):10357–67.

    Article  CAS  PubMed  Google Scholar 

  135. Taniguchi H, Yokomizo Y, Okuda K. Fas-Fas ligand system mediates luteal cell death in bovine corpus luteum. Biol Reprod. 2002;66(3):754–9.

    Article  CAS  PubMed  Google Scholar 

  136. Okuda K, Sakumoto R. Multiple roles of TNF super family members in corpus luteum function. Reprod Biol Endocrinol. 2003;1:95.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Friedman A, Weiss S, Levy N, Meidan R. Role of tumor necrosis factor alpha and its type I receptor in luteal regression: induction of programmed cell death in bovine corpus luteum-derived endothelial cells. Biol Reprod. 2000;63(6):1905–12.

    Article  CAS  PubMed  Google Scholar 

  138. Rueda BR, Botros IW, Pierce KL, Regan JW, Hoyer PB. Comparison of mRNA levels for the PGF(2alpha) receptor (FP) during luteolysis and early pregnancy in the ovine corpus luteum. Endocrine. 1995;3(11):781–7.

    Article  CAS  PubMed  Google Scholar 

  139. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991;51(23 pt 1):6304–11.

    CAS  PubMed  Google Scholar 

  140. Kliem H, Berisha B, Meyer HH, Schams D. Regulatory changes of apoptotic factors in the bovine corpus luteum after induced luteolysis. Mol Reprod Dev. 2009;76(3):220–30.

    Article  CAS  PubMed  Google Scholar 

  141. Parrish AB, Freel CD, Kornbluth S. Cellular mechanisms controlling caspase activation and function. Cold Spring Harbor Perspect Biol. 2013;5(6).

    Google Scholar 

  142. Yang Y, Sun M, Shan Y, Zheng X, Ma H, Ma W, et al. Endoplasmic reticulum stress-mediated apoptotic pathway is involved in corpus luteum regression in rats. Reprod Sci. 2015;22(5):572–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ferreira-Dias G, Mateus L, Costa AS, Sola S, Ramalho RM, Castro RE, et al. Progesterone and caspase-3 activation in equine cyclic corpora lutea. Reprod Domestic Anim. 2007;42(4):380–6.

    Article  CAS  Google Scholar 

  144. Skarzynski DJ, Jaroszewski JJ, Okuda K. Role of tumor necrosis factor-alpha and nitric oxide in luteolysis in cattle. Domestic Anim Endocrinol. 2005;29(2):340–6.

    Article  CAS  Google Scholar 

  145. Rueda BR, Hendry IR, Tilly JL, Hamernik DL. Accumulation of caspase-3 messenger ribonucleic acid and induction of caspase activity in the ovine corpus luteum following prostaglandin F2alpha treatment in vivo. Biol Reprod. 1999;60(5):1087–92.

    Article  CAS  PubMed  Google Scholar 

  146. Lee J, Banu SK, McCracken JA, Arosh JA. Early pregnancy modulates survival and apoptosis pathways in the corpus luteum in sheep. Reproduction. 2016;151(3):187–202.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rina Meidan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Meidan, R., Girsh, E., Mamluk, R., Levy, N., Farberov, S. (2017). Luteolysis in Ruminants: Past Concepts, New Insights, and Persisting Challenges. In: Meidan, R. (eds) The Life Cycle of the Corpus Luteum. Springer, Cham. https://doi.org/10.1007/978-3-319-43238-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43238-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43236-6

  • Online ISBN: 978-3-319-43238-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics