Skip to main content

Plant Fungus Interaction Proteomics: An Update

  • Chapter
  • First Online:
Agricultural Proteomics Volume 2

Abstract

Diversity of angiosperm is renowned and mechanism of perception and interaction with different environmental conditions is also variable. Patho-stress response in different plant families varies during the invasion of same or different fungal species. A major puzzle is how interaction and communication could increase fitness in plant at molecular level. Global proteome analysis of plant-pathosystem provides an invaluable resource for the identification of host as well as pathogen proteins involved in disease progression or immunity development. At protein level plant-fungal interaction upsurge the need to understand protein homeostasis and molecular adaptation of building blocks of cell to manifest natural selection for the host. Here, we examine the multilayered facets of interaction between organisms of two diverse kingdoms, namely plant and fungi at protein level based on more than 3000 identified host proteins till date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arora DK (2003) Fungal biotechnology in agricultural, food, and environmental applications. CRC Press, Boca Raton

    Book  Google Scholar 

  2. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, Mccraw SL et al (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194

    Article  CAS  PubMed  Google Scholar 

  3. Coumans J, Harvey J, Backhouse D, Poljak A, Raftery M, Nehl D et al (2011) Proteomic assessment of host-associated microevolution in the fungus Thielaviopsis basicola. Environ Microbiol 13:576–588

    Article  CAS  PubMed  Google Scholar 

  4. Devos S, Laukens K, Deckers P, Van Der Straeten D, Beeckman T, Inzé D et al (2006) A hormone and proteome approach to picturing the initial metabolic events during Plasmodiophora brassicae infection on Arabidopsis. Mol Plant Microbe Interact 19:1431–1443

    Article  CAS  PubMed  Google Scholar 

  5. Choudhary MK, Basu D, Datta A, Chakraborty N, Chakraborty S (2009) Dehydration-responsive nuclear proteome of rice (Oryza sativa L.) illustrates protein network, novel regulators of cellular adaptation, and evolutionary perspective. Mol Cell Proteomics 8:1579–1598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ballini E, Morel J-B, Droc G, Price A, Courtois B, Notteghem J-L et al (2008) A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant Microbe Interact 21:859–868

    Article  CAS  PubMed  Google Scholar 

  7. Varshney RK, Mir RR, Bhatia S, Thudi M, Hu Y, Azam S et al (2014) Integrated physical, genetic and genome map of chickpea (Cicer arietinum L.). Funct Integr Genomics 14:59–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lambel S, Lanini B, Vivoda E, Fauve J, Wechter WP, Harris-Shultz KR et al (2014) A major QTL associated with Fusarium oxysporum race 1 resistance identified in genetic populations derived from closely related watermelon lines using selective genotyping and genotyping-by-sequencing for SNP discovery. Theor Appl Genet 127:2105–2115

    Article  CAS  PubMed  Google Scholar 

  9. Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breeding 128:1–26

    Article  CAS  Google Scholar 

  10. Massman J, Cooper B, Horsley R, Neate S, Dill-Macky R, Chao S et al (2011) Genome-wide association mapping of Fusarium head blight resistance in contemporary barley breeding germplasm. Mol Breeding 27:439–454

    Article  Google Scholar 

  11. Aghnoum R, Marcel TC, Johrde A, Pecchioni N, Schweizer P, Niks RE (2010) Basal host resistance of barley to powdery mildew: connecting quantitative trait Loci and candidate genes. Mol Plant Microbe Interact 23:91–102

    Article  CAS  PubMed  Google Scholar 

  12. Coram TE, Pang EC (2006) Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochyta rabiei. Plant Biotechnol J 4:647–666

    Article  CAS  PubMed  Google Scholar 

  13. Ashraf N, Ghai D, Barman P, Basu S, Gangisetty N, Mandal MK et al (2009) Comparative analyses of genotype dependent expressed sequence tags and stress-responsive transcriptome of chickpea wilt illustrate predicted and unexpected genes and novel regulators of plant immunity. BMC Genom 10:415

    Article  CAS  Google Scholar 

  14. Bedre R, Rajasekaran K, Mangu VR, Timm LES, Bhatnagar D, Baisakh N (2015) Genome-wide transcriptome analysis of cotton (Gossypium hirsutum L.) identifies candidate gene signatures in response to aflatoxin producing fungus Aspergillus flavus. PLoS ONE 10:e0138025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Winnenburg R, Urban M, Beacham A, Baldwin TK, Holland S, Lindeberg M et al (2008) PHI-base update: additions to the pathogen–host interaction database. Nucleic Acids Res 36:D572–D576

    Article  CAS  PubMed  Google Scholar 

  16. Chan SK, Hsing M, Hormozdiari F, Cherkasov A (2007) Relationship between insertion/deletion (indel) frequency of proteins and essentiality. BMC Bioinformatics 8:1

    Article  Google Scholar 

  17. Ajawatanawong P, Baldauf SL (2013) Evolution of protein indels in plants, animals and fungi. BMC Evol Biol 13:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sharma N, Rahman MH, Strelkov S, Thiagarajah M, Bansal VK, Kav NN (2007) Proteome-level changes in two Brassica napus lines exhibiting differential responses to the fungal pathogen Alternaria brassicae. Plant Sci 172:95–110

    Article  CAS  Google Scholar 

  19. Floerl S, Majcherczyk A, Possienke M, Feussner K, Tappe H, Gatz C et al (2012) Verticillium longisporum infection affects the leaf apoplastic proteome, metabolome, and cell wall properties in Arabidopsis thaliana. PLoS ONE 7:e31435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Garg H, Li H, Sivasithamparam K, Barbetti MJ (2013) Differentially expressed proteins and associated histological and disease progression changes in cotyledon tissue of a resistant and susceptible genotype of Brassica napus infected with Sclerotinia sclerotiorum. PLoS ONE 8:e65205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liang Y, Strelkov SE, Kav NN (2009) Oxalic acid-mediated stress responses in Brassica napus L. Proteomics 9:3156–3173

    Article  CAS  PubMed  Google Scholar 

  22. Liang Y, Srivastava S, Rahman MH, Strelkov SE, Kav NN (2008) Proteome changes in leaves of Brassica napus L. as a result of Sclerotinia sclerotiorum challenge. J Agric Food Chem 56:1963–1976

    Article  CAS  PubMed  Google Scholar 

  23. Mukherjee AK, Carp M-J, Zuchman R, Ziv T, Horwitz BA, Gepstein S (2010) Proteomics of the response of Arabidopsis thaliana to infection with Alternaria brassicicola. J Proteomics 73:709–720

    Article  CAS  PubMed  Google Scholar 

  24. Mulema JM, Okori P, Denby KJ (2013) Proteomic analysis of the Arabidopsis thaliana-Botrytis cinerea interaction using two-dimensional liquid chromatography. Afr J Biotechnol 10:17551–17563

    Google Scholar 

  25. Wen F, Vanetten HD, Tsaprailis G, Hawes MC (2007) Extracellular proteins in pea root tip and border cell exudates. Plant Physiol 143:773–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hao J, Wu W, Wang Y, Yang Z, Liu Y, Lv Y et al (2015) Arabidopsis thaliana defense response to the ochratoxin A-producing strain (Aspergillus ochraceus 3.4412). Plant Cell Rep 34:705–719

    Article  CAS  PubMed  Google Scholar 

  27. Ndimba BK, Chivasa S, Hamilton JM, Simon WJ, Slabas AR (2003) Proteomic analysis of changes in the extracellular matrix of Arabidopsis cell suspension cultures induced by fungal elicitors. Proteomics 3:1047–1059

    Article  CAS  PubMed  Google Scholar 

  28. Subramanian B, Bansal VK, Kav NN (2005) Proteome-level investigation of Brassica carinata-derived resistance to Leptosphaeria maculans. J Agric Food Chem 53:313–324

    Article  CAS  PubMed  Google Scholar 

  29. Sharma N, Hotte N, Rahman MH, Mohammadi M, Deyholos MK, Kav NN (2008) Towards identifying Brassica proteins involved in mediating resistance to Leptosphaeria maculans: a proteomics-based approach. Proteomics 8:3516–3535

    Article  CAS  PubMed  Google Scholar 

  30. Asano T, Kimura M, Nishiuchi T (2012) The defense response in Arabidopsis thaliana against Fusarium sporotrichioides. Proteome Sci 10:1

    Article  CAS  Google Scholar 

  31. O’brien JA, Daudi A, Finch P, Butt VS, Whitelegge JP, Souda P et al (2012) A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMP-elicited defense. Plant Physiol 158:2013–2027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kaur P, Jost R, Sivasithamparam K, Barbetti MJ (2011) Proteome analysis of the Albugo candida–Brassica juncea pathosystem reveals that the timing of the expression of defence-related genes is a crucial determinant of pathogenesis. J Exp Botany 62(3):1285–1298

    Google Scholar 

  33. Sun C, Wang L, Hu D, Riquicho ARM, Liu T, Hou X et al (2014) Proteomic analysis of non-heading Chinese cabbage infected with Hyaloperonospora parasitica. J Proteomics 98:15–30

    Article  CAS  PubMed  Google Scholar 

  34. Chivasa S, Hamilton JM, Pringle RS, Ndimba BK, Simon WJ, Lindsey K et al (2006) Proteomic analysis of differentially expressed proteins in fungal elicitor-treated Arabidopsis cell cultures. J Exp Bot 57:1553–1562

    Article  CAS  PubMed  Google Scholar 

  35. Floerl S, Druebert C, Majcherczyk A, Karlovsky P, Kües U, Polle A (2008) Defence reactions in the apoplastic proteome of oilseed rape (Brassica napus var. napus) attenuate Verticillium longisporum growth but not disease symptoms. BMC Plant Biol 8:1

    Article  CAS  Google Scholar 

  36. Benschop JJ, Mohammed S, O’flaherty M, Heck Aj, Slijper M, Menke FL (2007) Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol Cell Proteomics 6:1198–1214

    Article  CAS  PubMed  Google Scholar 

  37. Valot B, Negroni L, Zivy M, Gianinazzi S, Dumas‐Gaudot E (2006) A mass spectrometric approach to identify arbuscular mycorrhiza‐related proteins in root plasma membrane fractions. Proteomics 6 Suppl 1:S145–S155. doi:10.1002/pmic.200500403

    Google Scholar 

  38. Aloui A, Recorbet G, Gollotte A, Robert F, Valot B, Gianinazzi-Pearson V et al (2009) On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: a root proteomic study. Proteomics 9:420–433

    Article  CAS  PubMed  Google Scholar 

  39. Curto M, Camafeita E, Lopez JA, Maldonado AM, Rubiales D, Jorrín JV (2006) A proteomic approach to study pea (Pisum sativum) responses to powdery mildew (Erysiphe pisi). Proteomics 6 Suppl 1:S163–S174. doi:10.1002/pmic.200500396

    Google Scholar 

  40. Marra R, Ambrosino P, Carbone V, Vinale F, Woo SL, Ruocco M et al (2006) Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Curr Genet 50:307–321

    Article  CAS  PubMed  Google Scholar 

  41. Castillejo MÁ, Curto M, Fondevilla S, Rubiales D, Jorrín JV (2010) Two-dimensional electrophoresis based proteomic analysis of the pea (Pisum sativum) in response to Mycosphaerella pinodes. J Agric Food Chem 58:12822–12832

    Article  CAS  PubMed  Google Scholar 

  42. Lei Z, Chen F, Watson BS, Nagaraj S, Elmer AM, Dixon RA et al (2010) Comparative proteomics of yeast-elicited Medicago truncatula cell suspensions reveals induction of isoflavonoid biosynthesis and cell wall modifications. J Proteome Res 9:6220–6231

    Article  CAS  PubMed  Google Scholar 

  43. Wang T, Zhang E, Chen X, Li L, Liang X (2010) Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (Arachis hypogaea L). BMC Plant Biol 10:1

    Article  Google Scholar 

  44. Palomares-Rius JE, Castillo P, Navas-Cortés JA, Jiménez-Díaz RM, Tena M (2011) A proteomic study of in-root interactions between chickpea pathogens: The root-knot nematode Meloidogyne artiellia and the soil-borne fungus Fusarium oxysporum f. sp. ciceris race 5. Journal of proteomics 74:2034–2051

    Article  CAS  PubMed  Google Scholar 

  45. Wang Z, Yan S, Liu C, Chen F, Wang T (2012) Proteomic analysis reveals an aflatoxin-triggered immune response in cotyledons of Arachis hypogaea infected with Aspergillus flavus. J Proteome Res 11:2739–2753

    Article  CAS  PubMed  Google Scholar 

  46. Chatterjee M, Gupta S, Bhar A, Chakraborti D, Basu D, Das S (2014) Analysis of root proteome unravels differential molecular responses during compatible and incompatible interaction between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceri Race1 (Foc1). BMC Genom 15:949

    Article  CAS  Google Scholar 

  47. Moura HFN, Vasconcelos IM, Souza CEA, Silva FD, Moreno FB, Lobo MD et al (2014) Proteomics changes during the incompatible interaction between cowpea and Colletotrichum gloeosporioides (Penz.) Penz and Sacc. Plant Sci 217:158–175

    Article  PubMed  CAS  Google Scholar 

  48. Pereira JL, Queiroz RM, Charneau SO, Felix CR, Ricart CA, Da Silva FL et al (2014) Analysis of Phaseolus vulgaris response to its association with Trichoderma harzianum (ALL-42) in the presence or absence of the phytopathogenic fungi Rhizoctonia solani and Fusarium solani. PLoS ONE 9:e98234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Jain A, Singh A, Singh S, Singh V, Singh HB (2015) Comparative proteomic analysis in pea treated with microbial consortia of beneficial microbes reveals changes in the protein network to enhance resistance against Sclerotinia sclerotiorum. J Plant Physiol 182:79–94

    Article  CAS  PubMed  Google Scholar 

  50. Kumar D, Kirti PB (2015) Transcriptomic and proteomic analyses of resistant host responses in Arachis diogoi challenged with late leaf spot pathogen, Phaeoisariopsis personata. PloS One 10:e0117559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Subramanian S, Cho U-H, Keyes C, Yu O (2009) Distinct changes in soybean xylem sap proteome in response to pathogenic and symbiotic microbe interactions. BMC Plant Biol 9:1

    Article  CAS  Google Scholar 

  52. Zhao J, Zhang Y, Bian X, Lei J, Sun J, Guo N et al (2013) A comparative proteomics analysis of soybean leaves under biotic and abiotic treatments. Mol Biol Rep 40:1553–1562

    Article  CAS  PubMed  Google Scholar 

  53. Colditz F, Nyamsuren O, Niehaus K, Eubel H, Braun H-P, Krajinski F (2004) Proteomic approach: identification of Medicago truncatula proteins induced in roots after infection with the pathogenic oomycete Aphanomyces euteiches. Plant Mol Biol 55:109–120

    Article  CAS  PubMed  Google Scholar 

  54. Amey RC, Schleicher T, Slinn J, Lewis M, Macdonald H, Neill SJ et al (2008) Proteomic analysis of a compatible interaction between Pisum sativum (pea) and the downy mildew pathogen Peronospora viciae. Eur J Plant Pathol 122:41–55

    Article  CAS  Google Scholar 

  55. Lee J, Feng J, Campbell KB, Scheffler BE, Garrett WM, Thibivilliers S et al (2009) Quantitative proteomic analysis of bean plants infected by a virulent and avirulent obligate rust fungus. Mol Cell Proteomics 8:19–31

    Article  CAS  PubMed  Google Scholar 

  56. Trapphoff T, Beutner C, Niehaus K, Colditz F (2009) Induction of distinct defense-associated protein patterns in Aphanomyces euteiches (Oomycota)-elicited and-inoculated Medicago truncatula cell-suspension cultures: a proteome and phosphoproteome approach. Mol Plant Microbe Interact 22:421–436

    Article  CAS  PubMed  Google Scholar 

  57. Cooper B, Campbell KB, Feng J, Garrett WM, Frederick R (2011) Nuclear proteomic changes linked to soybean rust resistance. Mol BioSyst 7:773–783

    Article  CAS  PubMed  Google Scholar 

  58. Rep M, Dekker HL, Vossen JH, De Boer AD, Houterman PM, Speijer D et al (2002) Mass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato. Plant Physiol 130:904–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Houterman PM, Speijer D, Dekker HL, Cg DEK, Cornelissen BJ, Rep M (2007) The mixed xylem sap proteome of Fusarium oxysporum-infected tomato plants. Mol Plant Pathol 8:215–221

    Article  CAS  PubMed  Google Scholar 

  60. Mazzeo MF, Cacace G, Ferriello F, Puopolo G, Zoina A, Ercolano MR et al (2014) Proteomic investigation of response to FORL infection in tomato roots. Plant Physiol Biochem 74:42–49

    Article  CAS  PubMed  Google Scholar 

  61. Shah P, Powell AL, Orlando R, Bergmann C, Gutierrez-Sanchez G (2012) Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea. J Proteome Res 11:2178–2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pan X, Zhu B, Luo Y, Fu D (2013) Unraveling the protein network of tomato fruit in response to necrotrophic phytopathogenic Rhizopus nigricans. PLoS ONE 8:e73034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fernández MB, Pagano MR, Daleo GR, Guevara MG (2012) Hydrophobic proteins secreted into the apoplast may contribute to resistance against Phytophthora infestans in potato. Plant Physiol Biochem 60:59–66

    Article  PubMed  CAS  Google Scholar 

  64. Lim S, Borza T, Peters RD, Coffin RH, Al-Mughrabi KI, Pinto DM et al (2013) Proteomics analysis suggests broad functional changes in potato leaves triggered by phosphites and a complex indirect mode of action against Phytophthora infestans. J Proteomics 93:207–223

    Article  CAS  PubMed  Google Scholar 

  65. Burra DD, Berkowitz O, Hedley PE, Morris J, Resjö S, Levander F et al (2014) Phosphite-induced changes of the transcriptome and secretome in Solanum tuberosum leading to resistance against Phytophthora infestans. BMC Plant Biol 14:254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Louis B, Waikhom SD, Roy P, Bhardwaj PK, Singh MW, Chandradev SK et al (2014) Invasion of Solanum tuberosum L. by Aspergillus terreus: a microscopic and proteomics insight on pathogenicity. BMC Res Notes 7:350

    Article  PubMed  PubMed Central  Google Scholar 

  67. Villela-Dias C, Camillo LR, De Oliveira GA, Sena JA, Santiago AS, De Sousa ST et al (2014) Nep1-like protein from Moniliophthora perniciosa induces a rapid proteome and metabolome reprogramming in cells of Nicotiana benthamiana. Physiol Plant 150:1–17

    Article  CAS  PubMed  Google Scholar 

  68. Cobos R, Barreiro C, Mateos RM, Coque J-JR (2010) Cytoplasmic-and extracellular-proteome analysis of Diplodia seriata: a phytopathogenic fungus involved in grapevine decline. Proteome science 8:1

    Article  CAS  Google Scholar 

  69. Marsh E, Alvarez S, Hicks LM, Barbazuk WB, Qiu W, Kovacs L et al (2010) Changes in protein abundance during powdery mildew infection of leaf tissues of Cabernet Sauvignon grapevine (Vitis vinifera L.). Proteomics 10:2057–2064

    Article  CAS  PubMed  Google Scholar 

  70. Milli A, Cecconi D, Bortesi L, Persi A, Rinalducci S, Zamboni A et al (2012) Proteomic analysis of the compatible interaction between Vitis vinifera and Plasmopara viticola. J Proteomics 75:1284–1302

    Article  CAS  PubMed  Google Scholar 

  71. Palmieri MC, Perazzolli M, Matafora V, Moretto M, Bachi A, Pertot I (2012) Proteomic analysis of grapevine resistance induced by Trichoderma harzianum T39 reveals specific defence pathways activated against downy mildew. J Exp Bot 63:6237–6251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Spagnolo A, Larignon P, Magnin-Robert M, Hovasse A, Cilindre C, Van Dorsselaer A et al (2014) Flowering as the most highly sensitive period of grapevine (Vitis vinifera L. cv Mourvèdre) to the Botryosphaeria dieback agents Neofusicoccum parvum and Diplodia seriata infection. Int J Mol Sci 15:9644–9669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dadakova K, Havelkova M, Kurkova B, Tlolkova I, Kasparovsky T, Zdrahal Z et al (2015) Proteome and transcript analysis of Vitis vinifera cell cultures subjected to Botrytis cinerea infection. J Proteomics 119:143–153

    Article  CAS  PubMed  Google Scholar 

  74. Chan Z, Qin G, Xu X, Li B, Tian S (2007) Proteome approach to characterize proteins induced by antagonist yeast and salicylic acid in peach fruit. J Proteome Res 6:1677–1688

    Article  CAS  PubMed  Google Scholar 

  75. Chan Z, Wang Q, Xu X, Meng X, Qin G, Li B et al (2008) Functions of defense-related proteins and dehydrogenases in resistance response induced by salicylic acid in sweet cherry fruits at different maturity stages. Proteomics 8:4791–4807

    Article  CAS  PubMed  Google Scholar 

  76. Kwasiborski A, Bajji M, Renaut J, Delaplace P, Jijakli MH (2014) Identification of metabolic pathways expressed by Pichia anomala KH6 in the presence of the pathogen Botrytis cinerea on apple: new possible targets for biocontrol improvement. PLoS ONE 9:e91434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Zhang C-X, Tian Y, Cong P-H (2015) Proteome analysis of pathogen-responsive proteins from apple leaves induced by the alternaria blotch Alternaria alternata. PLoS ONE 10:e0122233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Fang X, Jost R, Finnegan PM, Barbetti MJ (2013) Comparative proteome analysis of the strawberry-fusarium oxysporum f. sp. fragariae pathosystem reveals early activation of defense responses as a crucial determinant of host resistance. J Proteome Res 12:1772–1788

    Article  CAS  PubMed  Google Scholar 

  79. Fang X, Chen W, Xin Y, Zhang H, Yan C, Yu H et al (2012) Proteomic analysis of strawberry leaves infected with Colletotrichum fragariae. J Proteomics 75:4074–4090

    Article  CAS  PubMed  Google Scholar 

  80. Fang X, Barbetti MJ (2014) Differential protein accumulations in isolates of the strawberry wilt pathogen Fusarium oxysporum f. sp. fragariae differing in virulence. J Proteomics 108:223–237

    Article  CAS  PubMed  Google Scholar 

  81. Coumans JV, Poljak A, Raftery MJ, Backhouse D, Pereg-Gerk L (2009) Analysis of cotton (Gossypium hirsutum) root proteomes during a compatible interaction with the black root rot fungus Thielaviopsis basicola. Proteomics 9:335–349

    Article  CAS  PubMed  Google Scholar 

  82. Wang FX, Ma YP, Yang CL, Zhao PM, Yao Y, Jian GL et al (2011) Proteomic analysis of the sea-island cotton roots infected by wilt pathogen Verticillium dahliae. Proteomics 11:4296–4309

    Article  CAS  PubMed  Google Scholar 

  83. Guerra-Guimarães L, Tenente R, Pinheiro C, Chaves I, Do Céu Silva M, Cardoso FM et al (2015) Proteomic analysis of apoplastic fluid of Coffea arabica leaves highlights novel biomarkers for resistance against Hemileia vastatrix. Front Plant Sci 6:478. doi:10.3389/fpls.2015.00478 eCollection 2015

  84. Sinha R, Chattopadhyay S (2011) Changes in the leaf proteome profile of Mentha arvensis in response to Alternaria alternata infection. J Proteomics 74:327–336

    Article  CAS  PubMed  Google Scholar 

  85. Sinha R, Bhattacharyya D, Majumdar AB, Datta R, Hazra S, Chattopadhyay S (2013) Leaf proteome profiling of transgenic mint infected with Alternaria alternata. J Proteomics 93:117–132

    Article  CAS  PubMed  Google Scholar 

  86. Larson RL, Hill AL, Nuñez A (2007) Characterization of protein changes associated with sugar beet (Beta vulgaris) resistance and susceptibility to Fusarium oxysporum. J Agric Food Chem 55:7905–7915

    Article  CAS  PubMed  Google Scholar 

  87. Louarn S, Nawrocki A, Edelenbos M, Jensen DF, Jensen ON, Collinge DB et al (2012) The influence of the fungal pathogen Mycocentrospora acerina on the proteome and polyacetylenes and 6-methoxymellein in organic and conventionally cultivated carrots (Daucus carota) during post harvest storage. J Proteomics 75:962–977

    Article  CAS  PubMed  Google Scholar 

  88. Segarra G, Casanova E, Bellido D, Odena MA, Oliveira E, Trillas I (2007) Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7:3943–3952

    Article  CAS  PubMed  Google Scholar 

  89. Acosta-Muniz CH, Escobar-Tovar L, Valdes-Rodriguez S, Fernandez-Pavia S, Arias-Saucedo LJ, La Cruz De, Espindola Barquera M et al (2012) Identification of avocado (Persea americana) root proteins induced by infection with the oomycete Phytophthora cinnamomi using a proteomic approach. Physiol Plant 144:59–72

    Article  CAS  PubMed  Google Scholar 

  90. Li X, Bai T, Li Y, Ruan X, Li H (2013) Proteomic analysis of Fusarium oxysporum f. sp. cubense tropical race 4-inoculated response to Fusarium wilts in the banana root cells. Proteome science 11:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Cipriano AK, Gondim DM, Vasconcelos IM, Martins JA, Moura AA, Moreno FB et al (2015) Proteomic analysis of responsive stem proteins of resistant and susceptible cashew plants after Lasiodiplodia theobromae infection. J Proteomics 113:90–109

    Article  CAS  PubMed  Google Scholar 

  92. Pechanova O, Hsu C-Y, Adams JP, Pechan T, Vandervelde L, Drnevich J et al (2010) Apoplast proteome reveals that extracellular matrix contributes to multistress response in poplar. BMC Genom 11:674

    Article  CAS  Google Scholar 

  93. Chen Q, Guo W, Feng L, Ye X, Xie W, Huang X et al (2015) Transcriptome and proteome analysis of Eucalyptus infected with Calonectria pseudoreteaudii. J Proteomics 115:117–131

    Article  CAS  PubMed  Google Scholar 

  94. Valcu C-M, Junqueira M, Shevchenko A, Schlink K (2009) Comparative proteomic analysis of responses to pathogen infection and wounding in Fagus sylvatica. J Proteome Res 8:4077–4091

    Article  CAS  PubMed  Google Scholar 

  95. Mandelc S, Timperman I, Radisek S, Devreese B, Samyn B, Javornik B (2013) Comparative proteomic profiling in compatible and incompatible interactions between hop roots and Verticillium albo-atrum. Plant Physiol Biochem 68:23–31

    Article  CAS  PubMed  Google Scholar 

  96. Ardila HD, Fernandez RG, Higuera BL, Redondo I, Martinez ST (2014) Protein extraction and gel-based separation methods to analyze responses to pathogens in carnation (Dianthus caryophyllus L). Methods Mol Biol 1072:573–591

    Article  CAS  PubMed  Google Scholar 

  97. Wang Y, Yang L, Xu H, Li Q, Ma Z, Chu C (2005) Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum. Proteomics 5:4496–4503

    Article  CAS  PubMed  Google Scholar 

  98. Zhou W, Kolb FL, Riechers DE (2005) Identification of proteins induced or upregulated by Fusarium head blight infection in the spikes of hexaploid wheat (Triticum aestivum). Genome 48:770–780

    Article  CAS  PubMed  Google Scholar 

  99. Zhou W, Eudes F, Laroche A (2006) Identification of differentially regulated proteins in response to a compatible interaction between the pathogen Fusarium graminearum and its host, Triticum aestivum. Proteomics 6:4599–4609

    Article  CAS  PubMed  Google Scholar 

  100. Cao T, Kim YM, Kav NN, Strelkov SE (2009) A proteomic evaluation of Pyrenophora tritici-repentis, causal agent of tan spot of wheat, reveals major differences between virulent and avirulent isolates. Proteomics 9:1177–1196

    Article  CAS  PubMed  Google Scholar 

  101. Dornez E, Croes E, Gebruers K, Carpentier S, Swennen R, Laukens K et al (2010) 2-D DIGE reveals changes in wheat xylanase inhibitor protein families due to Fusarium graminearum ΔTri5 infection and grain development. Proteomics 10:2303–2319

    Article  CAS  PubMed  Google Scholar 

  102. Kim YM, Bouras N, Kav NN, Strelkov SE (2010) Inhibition of photosynthesis and modification of the wheat leaf proteome by Ptr ToxB: A host-specific toxin from the fungal pathogen Pyrenophora tritici-repentis. Proteomics 10:2911–2926

    Article  CAS  PubMed  Google Scholar 

  103. Eggert K, Pawelzik E (2011) Proteome analysis of Fusarium head blight in grains of naked barley (Hordeum vulgare subsp. nudum). Proteomics 11:972–985

    Article  CAS  PubMed  Google Scholar 

  104. Eggert K, Zörb C, Mühling K, Pawelzik E (2011) Proteome analysis of Fusarium infection in emmer grains (Triticum dicoccum). Plant Pathol 60:918–928

    Article  CAS  Google Scholar 

  105. Gunnaiah R, Kushalappa AC, Duggavathi R, Fox S, Somers DJ (2012) Integrated Metabolo-Proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1) contributes to resistance against Fusarium graminearum. PLoS ONE 7:e40695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yang F, Melo-Braga MN, Larsen MR, Jørgensen HJ, Palmisano G (2013) Battle through signaling between wheat and the fungal pathogen Septoria tritici revealed by proteomics and phosphoproteomics. Mol Cell Proteomics 12:2497–2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Magliano TMA, Ortega LM, Astoreca AL, Pritsch C (2013) Proteomic approaches to analyze wheat-Fusarium graminearum interaction. In: Chulze NS, Alconada Magliano MT (eds) Fusarium head blight in Latin America. Springer, Netherlands, Dordrecht, pp 123–140

    Chapter  Google Scholar 

  108. Mandal MS, Fu Y, Zhang S, Ji W (2014) Proteomic analysis of the defense response of wheat to the powdery mildew fungus, Blumeria graminis f. sp. tritici. Protein J 33:513–524

    Article  CAS  PubMed  Google Scholar 

  109. Winterberg B, Du Fall LA, Song X, Pascovici D, Molloy M, Ohms S et al (2014) The necrotrophic effector protein SnTox3 re-programs metabolism and elicits a strong defence response in susceptible wheat leaves. BMC Plant Biol 14:1

    Article  CAS  Google Scholar 

  110. M’barek SB, Cordewener JH, Van Der Lee TA, America AH, Gohari AM, Mehrabi R et al (2015) Proteome catalog of Zymoseptoria tritici captured during pathogenesis in wheat. Fungal Genet Biol 79:42–53

    Article  PubMed  CAS  Google Scholar 

  111. Chetouhi C, Bonhomme L, Lecomte P, Cambon F, Merlino M, Biron DG et al (2015) A proteomics survey on wheat susceptibility to Fusarium head blight during grain development. Eur J Plant Pathol 141:407–418

    Article  CAS  PubMed  Google Scholar 

  112. Day J, Gietz RD, Rampitsch C (2015) Proteome changes induced by Pyrenophora tritici-repentis ToxA in both insensitive and sensitive wheat indicate senescence-like signaling. Proteome Sci 13:1

    Article  CAS  Google Scholar 

  113. Yang F, Li W, Derbyshire M, Larsen MR, Rudd JJ, Palmisano G (2015) Unraveling incompatibility between wheat and the fungal pathogen Zymoseptoria tritici through apoplastic proteomics. BMC Genom 16:1

    Article  CAS  Google Scholar 

  114. Rampitsch C, Bykova NV, Mccallum B, Beimcik E, Ens W (2006) Analysis of the wheat and Puccinia triticina (leaf rust) proteomes during a susceptible host-pathogen interaction. Proteomics 6:1897–1907

    Article  CAS  PubMed  Google Scholar 

  115. Maytalman D, Mert Z, Baykal AT, Inan C, Günel A, Hasançebi S (2013) Proteomic analysis of early responsive resistance proteins of wheat (Triticum aestivum) to yellow rust (Puccinia striiformis f. sp. tritici) using ProteomeLab PF2D. Plant Omics 6:24

    CAS  Google Scholar 

  116. Kim JY, Wu J, Kwon SJ, Oh H, Lee SE, Kim SG et al (2014) Proteomics of rice and Cochliobolus miyabeanus fungal interaction: insight into proteins at intracellular and extracellular spaces. Proteomics 14:2307–2318

    Article  CAS  PubMed  Google Scholar 

  117. Kim SG, Wang Y, Lee KH, Park Z-Y, Park J, Wu J et al (2013) In-depth insight into in vivo apoplastic secretome of rice-Magnaporthe oryzae interaction. J Proteomics 78:58–71

    Article  CAS  PubMed  Google Scholar 

  118. Kim ST, Kim SG, Hwang DH, Kang SY, Kim HJ, Lee BH et al (2004) Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics 4:3569–3578

    Article  CAS  PubMed  Google Scholar 

  119. Lee J, Bricker TM, Lefevre M, Pinson SR, Oard JH (2006) Proteomic and genetic approaches to identifying defence-related proteins in rice challenged with the fungal pathogen Rhizoctonia solani. Mol Plant Pathol 7:405–416

    Article  CAS  PubMed  Google Scholar 

  120. Li H, Goodwin PH, Han Q, Huang L, Kang Z (2012) Microscopy and proteomic analysis of the non-host resistance of Oryza sativa to the wheat leaf rust fungus, Puccinia triticina f. sp. tritici. Plant Cell Rep 31:637–650

    Article  CAS  PubMed  Google Scholar 

  121. Li Y, Nie Y, Zhang Z, Ye Z, Zou X, Zhang L et al (2014) Comparative proteomic analysis of methyl jasmonate-induced defense responses in different rice cultivars. Proteomics 14:1088–1101

    Article  CAS  PubMed  Google Scholar 

  122. Zhao J, Yang Y, Kang Z (2014) Proteomic analysis of rice nonhost resistance to Puccinia striiformis f. sp. tritici using two-dimensional electrophoresis. Int J Mol Sci 15:21644–21659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Geddes J, Eudes F, Laroche A, Selinger LB (2008) Differential expression of proteins in response to the interaction between the pathogen Fusarium graminearum and its host, Hordeum vulgare. Proteomics 8:545–554

    Article  CAS  PubMed  Google Scholar 

  124. Yang F, Jensen JD, Svensson B, Jørgensen HJ, Collinge DB, Finnie C (2010) Analysis of early events in the interaction between Fusarium graminearum and the susceptible barley (Hordeum vulgare) cultivar Scarlett. Proteomics 10:3748–3755

    Article  CAS  PubMed  Google Scholar 

  125. Yang F, Svensson B, Finnie C (2011) Response of germinating barley seeds to Fusarium graminearum: the first molecular insight into Fusarium seedling blight. Plant Physiol Biochem 49:1362–1368

    Article  CAS  PubMed  Google Scholar 

  126. Bernardo L, Prinsi B, Negri AS, Cattivelli L, Espen L, Valè G (2012) Proteomic characterization of the Rph15 barley resistance gene-mediated defence responses to leaf rust. BMC Genom 13:1

    Article  CAS  Google Scholar 

  127. Anup CP, Melvin P, Shilpa N, Gandhi MN, Jadhav M, Ali H et al (2015) Proteomic analysis of elicitation of downy mildew disease resistance in pearl millet by seed priming with beta-aminobutyric acid and Pseudomonas fluorescens. J Proteomics 120:58–74

    Article  CAS  PubMed  Google Scholar 

  128. Gómez-Vidal S, Salinas J, Tena M, Lopez-Llorca LV (2009) Proteomic analysis of date palm (Phoenix dactylifera L.) responses to endophytic colonization by entomopathogenic fungi. Electrophoresis 30:2996–3005

    Article  PubMed  CAS  Google Scholar 

  129. Al-Obaidi JR, Mohd-Yusuf Y, Razali N, Jayapalan JJ, Tey CC, Md-Noh N et al (2014) Identification of proteins of altered abundance in oil palm infected with Ganoderma boninense. Int J Mol Sci 15:5175–5192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Jeffery Daim LD, Ooi TE, Ithnin N, Mohd Yusof H, Kulaveerasingam H, Abdul Majid N et al (2015) Comparative proteomic analysis of oil palm leaves infected with Ganoderma boninense revealed changes in proteins involved in photosynthesis, carbohydrate metabolism, and immunity and defense. Electrophoresis 36:1699–1710

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by grants from the Department of Biotechnology (DBT), Ministry of Science and Technology, Govt. of India (Grant Nos. BT/HRD/35/01/05/2013 and BT/PR10796/BRB/10/621/2008) and the National Institute of Plant Genome Research, India. K. N. and P. A. are the recipient of pre-doctoral fellowship from Council of Scientific and Industrial Research (CSIR), Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhra Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Narula, K., Aggarwal, P.R., Chakraborty, N., Chakraborty, S. (2016). Plant Fungus Interaction Proteomics: An Update. In: Salekdeh, G. (eds) Agricultural Proteomics Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-43278-6_10

Download citation

Publish with us

Policies and ethics